Comptes Rendus
Analyse mathématique/Analyse complexe
Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert
Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 893-896.

Nous étudions le comportement asymptotique des polynômes p,q,r de degrés n, approximants de Hermite–Padé de type I de la fonction exponentielle, i.e., p(z)e-z+q(z)+r(z)ez=𝒪(z3n+2) lorsque z→0. Une méthode du col pour les problèmes de Riemann–Hilbert, introduite par Deift et Zhou, est utilisée pour obtenir l'asymptotique forte des polynômes p(3nz),q(3nz),r(3nz) localement uniformément dans toute région du plan complexe. Une surface de Riemann, obtenue naturellement à partir des expressions intégrales des polynômes p,q,r est introduite, ainsi que certaines mesures et fonctions définies sur cette surface.

We describe the asymptotic behavior of the polynomials p,q,r of degree n in type I Hermite–Padé approximation to the exponential function, i.e., p(z)e-z+q(z)+r(z)ez=𝒪(z3n+2) as z→0. A steepest descent method for Riemann–Hilbert problems, due to Deift and Zhou, is used to obtain strong uniform asymptotics for the scaled polynomials p(3nz),q(3nz),r(3nz) in every domain of the complex plane. An important role is played by a three-sheeted Riemann surface and certain measures and functions defined on it.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00221-8

Arno Kuijlaars 1 ; Herbert Stahl 2 ; Walter Van Assche 1 ; Franck Wielonsky 3, 4

1 Katholieke Universiteit Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgique
2 TFH-Berlin, FB II, Luxemburger Straße 10, 13353 Berlin, Allemagne
3 UFR Math, FRE CNRS 2222, bat. M2, Université des sciences et technologies Lille 1, 59655 Villeneuve d'Ascq cedex, France
4 INRIA, 2004, route des Lucioles, BP 93, 06902, Sophia Antipolis, France
@article{CRMATH_2003__336_11_893_0,
     author = {Arno Kuijlaars and Herbert Stahl and Walter Van Assche and Franck Wielonsky},
     title = {Asymptotique des approximants de {Hermite{\textendash}Pad\'e} quadratiques de~la fonction exponentielle et probl\`emes de {Riemann{\textendash}Hilbert}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {893--896},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00221-8},
     language = {fr},
}
TY  - JOUR
AU  - Arno Kuijlaars
AU  - Herbert Stahl
AU  - Walter Van Assche
AU  - Franck Wielonsky
TI  - Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 893
EP  - 896
VL  - 336
IS  - 11
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00221-8
LA  - fr
ID  - CRMATH_2003__336_11_893_0
ER  - 
%0 Journal Article
%A Arno Kuijlaars
%A Herbert Stahl
%A Walter Van Assche
%A Franck Wielonsky
%T Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert
%J Comptes Rendus. Mathématique
%D 2003
%P 893-896
%V 336
%N 11
%I Elsevier
%R 10.1016/S1631-073X(03)00221-8
%G fr
%F CRMATH_2003__336_11_893_0
Arno Kuijlaars; Herbert Stahl; Walter Van Assche; Franck Wielonsky. Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 893-896. doi : 10.1016/S1631-073X(03)00221-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00221-8/

[1] P. Deift Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Courant Lecture Notes, 3, New York University, 1999 (Amer. Math. Soc., Providence, RI, 2000)

[2] P. Deift; X. Zhou A steepest descent method for oscillatory Riemann–Hilbert problems: asymptotics for the MKdV equation, Ann. of Math., Volume 137 (1993), pp. 295-368

[3] A.B.J. Kuijlaars, W. Van Assche, F. Wielonsky, Quadratic Hermite–Padé approximation to the exponential function: a Riemann–Hilbert approach, Manuscrit, 2003

[4] C. Pommerenke Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975

[5] H. Stahl Asymptotics for quadratic Hermite–Padé polynomials associated with the exponential function, Electron. Trans. Numer. Anal., Volume 14 (2002), pp. 193-220

[6] H. Stahl, Quadratic Hermite–Padé polynomials associated with the exponential function, Manuscrit

[7] W. Van Assche; J.S. Geronimo; A.B.J. Kuijlaars Riemann–Hilbert problems for multiple orthogonal polynomials (J. Bustoz et al., eds.), Special Functions 2000: Current Perspective and Future Directions, NATO Sci. Ser. II Math., Phys. and Chem., 30, Kluwer Academic, Dordrecht, 2001, pp. 23-59

Cité par Sources :

Ce travail a été réalisé avec le support des projets INTAS 2000-0272, G.0176.02 et G.0184.02 (FWO-Vlaanderen).

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: