Nous étudions le comportement asymptotique des polynômes
We describe the asymptotic behavior of the polynomials
Accepté le :
Publié le :
Arno Kuijlaars 1 ; Herbert Stahl 2 ; Walter Van Assche 1 ; Franck Wielonsky 3, 4
@article{CRMATH_2003__336_11_893_0, author = {Arno Kuijlaars and Herbert Stahl and Walter Van Assche and Franck Wielonsky}, title = {Asymptotique des approximants de {Hermite{\textendash}Pad\'e} quadratiques de~la fonction exponentielle et probl\`emes de {Riemann{\textendash}Hilbert}}, journal = {Comptes Rendus. Math\'ematique}, pages = {893--896}, publisher = {Elsevier}, volume = {336}, number = {11}, year = {2003}, doi = {10.1016/S1631-073X(03)00221-8}, language = {fr}, }
TY - JOUR AU - Arno Kuijlaars AU - Herbert Stahl AU - Walter Van Assche AU - Franck Wielonsky TI - Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert JO - Comptes Rendus. Mathématique PY - 2003 SP - 893 EP - 896 VL - 336 IS - 11 PB - Elsevier DO - 10.1016/S1631-073X(03)00221-8 LA - fr ID - CRMATH_2003__336_11_893_0 ER -
%0 Journal Article %A Arno Kuijlaars %A Herbert Stahl %A Walter Van Assche %A Franck Wielonsky %T Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert %J Comptes Rendus. Mathématique %D 2003 %P 893-896 %V 336 %N 11 %I Elsevier %R 10.1016/S1631-073X(03)00221-8 %G fr %F CRMATH_2003__336_11_893_0
Arno Kuijlaars; Herbert Stahl; Walter Van Assche; Franck Wielonsky. Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert. Comptes Rendus. Mathématique, Volume 336 (2003) no. 11, pp. 893-896. doi : 10.1016/S1631-073X(03)00221-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00221-8/
[1] Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Courant Lecture Notes, 3, New York University, 1999 (Amer. Math. Soc., Providence, RI, 2000)
[2] A steepest descent method for oscillatory Riemann–Hilbert problems: asymptotics for the MKdV equation, Ann. of Math., Volume 137 (1993), pp. 295-368
[3] A.B.J. Kuijlaars, W. Van Assche, F. Wielonsky, Quadratic Hermite–Padé approximation to the exponential function: a Riemann–Hilbert approach, Manuscrit, 2003
[4] Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975
[5] Asymptotics for quadratic Hermite–Padé polynomials associated with the exponential function, Electron. Trans. Numer. Anal., Volume 14 (2002), pp. 193-220
[6] H. Stahl, Quadratic Hermite–Padé polynomials associated with the exponential function, Manuscrit
[7] Riemann–Hilbert problems for multiple orthogonal polynomials (J. Bustoz et al., eds.), Special Functions 2000: Current Perspective and Future Directions, NATO Sci. Ser. II Math., Phys. and Chem., 30, Kluwer Academic, Dordrecht, 2001, pp. 23-59
- Spectral Curves, Variational Problems and the Hermitian Matrix Model with External Source, Communications in Mathematical Physics, Volume 383 (2021) no. 3, p. 2163 | DOI:10.1007/s00220-021-03999-y
- Hermite—Padé Approximants of the Mittag-Leffler Functions, Proceedings of the Steklov Institute of Mathematics, Volume 301 (2018) no. 1, p. 228 | DOI:10.1134/s0081543818040181
- Asymptotics of diagonal Hermite–Padé polynomials for the collection of exponential functions, Mathematical Notes, Volume 102 (2017) no. 1-2, p. 277 | DOI:10.1134/s000143461707029x
- On some properties of Hermite–Padé approximants to an exponential system, Proceedings of the Steklov Institute of Mathematics, Volume 298 (2017) no. 1, p. 317 | DOI:10.1134/s0081543817060190
- Асимптотика диагональных многочленов Эрмита-Паде для набора экспоненциальных функций, Математические заметки, Volume 102 (2017) no. 2, p. 302 | DOI:10.4213/mzm11315
- Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions, Mathematical Notes, Volume 99 (2016) no. 3-4, p. 417 | DOI:10.1134/s0001434616030111
- Верхние оценки модулей нулей аппроксимаций Эрмита-Паде для набора экспоненциальных функций, Математические заметки, Volume 99 (2016) no. 3, p. 409 | DOI:10.4213/mzm10668
- Type II Hermite–Padé approximation to the exponential function, Journal of Computational and Applied Mathematics, Volume 207 (2007) no. 2, p. 227 | DOI:10.1016/j.cam.2006.10.010
- RIEMANN-HILBERT PROBLEM AND ALGEBRAIC CURVES, Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, Volume 201 (2006), p. 65 | DOI:10.1007/978-1-4020-3503-6_7
- Riemann–Hilbert analysis and uniform convergence of rational interpolants to the exponential function, Journal of Approximation Theory, Volume 131 (2004) no. 1, p. 100 | DOI:10.1016/j.jat.2004.07.004
- Quadratic Hermite–Padé polynomials associated with the exponential function, Journal of Approximation Theory, Volume 125 (2003) no. 2, p. 238 | DOI:10.1016/j.jat.2003.09.012
Cité par 11 documents. Sources : Crossref
☆ Ce travail a été réalisé avec le support des projets INTAS 2000-0272, G.0176.02 et G.0184.02 (FWO-Vlaanderen).
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier