[Méthode d'éléments finis mixtes pour la magnéto-hydrodynamique incompressible]
Nous présentons une nouvelle méthode d'éléments finis mixtes pour les équations stationnaires tridimensionnelles de la magnéto-hydrodynamique incompressible. La partie fluide est discrétisée par des couples d'espaces standards vitesse–pression, stables selon la condition inf–sup, et la partie magnétique par une approche mixte utilisant les éléments de Nédélec de première espèce. Nous montrons que la méthode qui en résulte converge de façon quasi-optimale.
We present a new mixed finite element discretization for three-dimensional stationary incompressible magneto-hydrodynamics. The fluid variables are discretized by standard inf–sup stable velocity–pressure pairs and the magnetic variables by a mixed approach using Nédélec's elements of the first kind. The resulting method is shown to be quasi-optimally convergent.
Accepté le :
Publié le :
Anna Schneebeli 1 ; Dominik Schötzau 1
@article{CRMATH_2003__337_1_71_0, author = {Anna Schneebeli and Dominik Sch\"otzau}, title = {Mixed finite elements for incompressible magneto-hydrodynamics}, journal = {Comptes Rendus. Math\'ematique}, pages = {71--74}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(03)00256-5}, language = {en}, }
Anna Schneebeli; Dominik Schötzau. Mixed finite elements for incompressible magneto-hydrodynamics. Comptes Rendus. Mathématique, Volume 337 (2003) no. 1, pp. 71-74. doi : 10.1016/S1631-073X(03)00256-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00256-5/
[1] Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., Volume 131 (1996), pp. 41-90
[2] Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., Volume 93 (2002), pp. 239-277
[3] Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements, Comput. Methods Appl. Mech. Engrg., Volume 152 (1998), pp. 103-124
[4] A stabilized finite element method for the incompressible magnetohydrodynamic equations, Numer. Math., Volume 87 (2000), pp. 83-111
[5] Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 2D case, Math. Model. Numer. Anal., Volume 36 (2002), pp. 517-536
[6] J.-L. Guermond, P. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case, Numer. Methods Partial Differential Equations, to appear
[7] On the existence and uniqueness and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics, Math. Comp., Volume 56 (1991), pp. 523-563
[8] Mixed finite elements in
[9] D. Schötzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Tech. report 2003-03, Department of Mathematics, University of Basel
[10] R. Hartmann, W. Bangerth, G. Kanschat, deal.II differential equations analysis library, technical reference, IWR, Universität Heidelberg, http://www.dealii.org
- Convergence analysis of finite element method for incompressible magnetohydrodynamics system with variable density, Journal of Computational and Applied Mathematics, Volume 462 (2025), p. 116470 | DOI:10.1016/j.cam.2024.116470
- Monolithic multigrid for implicit Runge–Kutta discretizations of incompressible fluid flow, Journal of Computational Physics, Volume 478 (2023), p. 111961 | DOI:10.1016/j.jcp.2023.111961
- New Analysis of Mixed Finite Element Methods for Incompressible Magnetohydrodynamics, Journal of Scientific Computing, Volume 95 (2023) no. 3 | DOI:10.1007/s10915-023-02189-3
- New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics, Numerische Mathematik, Volume 153 (2023) no. 2-3, p. 327 | DOI:10.1007/s00211-022-01341-9
- Solution of Steady Incompressible MHD Problems with Quasi-Least Square Method, Inventions, Volume 7 (2022) no. 2, p. 40 | DOI:10.3390/inventions7020040
- A constrained transport divergence-free finite element method for incompressible MHD equations, Journal of Computational Physics, Volume 428 (2021), p. 109980 | DOI:10.1016/j.jcp.2020.109980
- Monolithic Multigrid Methods for Magnetohydrodynamics, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 5, p. S70 | DOI:10.1137/20m1348364
- A Charge-Conservative Finite Element Method for Inductionless MHD Equations. Part I: Convergence, SIAM Journal on Scientific Computing, Volume 41 (2019) no. 4, p. B796 | DOI:10.1137/17m1160768
- Block Preconditioners for Stable Mixed Nodal and Edge finite element Representations of Incompressible Resistive MHD, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 6, p. B1009 | DOI:10.1137/16m1074084
- Simulation of injector dynamics during steady inductive helicity injection current drive in the HIT-SI experiment, Physics of Plasmas, Volume 22 (2015) no. 4 | DOI:10.1063/1.4917476
- Mixed finite element approximation of incompressible MHD problems based on weighted regularization, Applied Numerical Mathematics, Volume 51 (2004) no. 1, p. 19 | DOI:10.1016/j.apnum.2004.02.005
Cité par 11 documents. Sources : Crossref
Commentaires - Politique