Comptes Rendus
Physique mathématique
Regularity results for a model in magnetohydrodynamics with imposed pressure
[Résultats de régularité pour un modèle en magnétohydrodynamique avec des conditions aux limites sur la pression]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1033-1043.

La plupart des travaux sur le système de la magnétohydrodynamique (MHD) considèrent une condition aux limites de type Dirichlet pour le champ de vitesses. Dans cette Note, nous étudions le système (MHD) avec une pression donnée au bord, ainsi qu’une trace tangentielle nulle pour la vitesse du fluide et le champ magnétique. Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe, on commence par prouver l’existence de solutions faibles dans le cas Hilbertien, et ensuite, nous montrons la régularité W 1,p (Ø) pour p2 et W 2,p (Ø) pour p6/5 en utilisant les résultats de régularité pour certains problèmes de Stokes avec ce type de conditions aux limites. De plus, pour des données petites, nous démontrons l’existence et l’unicité des solutions dans W 1,p (Ø) pour 3/2<p<2 en utilisant un théorème de point fixe appliqué au problème linéarisé de (MHD).

The magnetohydrodynamics (MHD) problem is most often studied in a framework where Dirichlet type boundary conditions on the velocity field is imposed. In this Note, we study the (MHD) system with pressure boundary condition, together with zero tangential trace for the velocity and the magnetic field. In a three-dimensional bounded possibly multiply connected domain, we first prove the existence of weak solutions in the Hilbert case, and later, the regularity in W 1,p (Ø) for p2 and in W 2,p (Ø) for p6/5 using the regularity results for some Stokes and elliptic problems with this type of boundary conditions. Furthermore, under the condition of small data, we obtain the existence and uniqueness of solutions in W 1,p (Ø) for 3/2<p<2 by using a fixed-point technique over a linearized (MHD) problem.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.113
Classification : 35J60, 35Q35, 35Q60

Julien Poirier 1 ; Nour Seloula 1

1 Laboratoire de Mathématiques Nicolas Oresme (LMNO). Université de Caen (UMR 6139), 14000 Caen, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_9-10_1033_0,
     author = {Julien Poirier and Nour Seloula},
     title = {Regularity results for a model in magnetohydrodynamics with imposed pressure},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1033--1043},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.113},
     language = {en},
}
TY  - JOUR
AU  - Julien Poirier
AU  - Nour Seloula
TI  - Regularity results for a model in magnetohydrodynamics with imposed pressure
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1033
EP  - 1043
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.113
LA  - en
ID  - CRMATH_2020__358_9-10_1033_0
ER  - 
%0 Journal Article
%A Julien Poirier
%A Nour Seloula
%T Regularity results for a model in magnetohydrodynamics with imposed pressure
%J Comptes Rendus. Mathématique
%D 2020
%P 1033-1043
%V 358
%N 9-10
%I Académie des sciences, Paris
%R 10.5802/crmath.113
%G en
%F CRMATH_2020__358_9-10_1033_0
Julien Poirier; Nour Seloula. Regularity results for a model in magnetohydrodynamics with imposed pressure. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1033-1043. doi : 10.5802/crmath.113. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.113/

[1] Gennady V. Alekseev Mixed Boundary value problems for stationary magneto-hydrodynamic equations of a viscous heat-conducting fluid, J. Math. Fluid Mech., Volume 18 (2016) no. 3, pp. 591-607 | DOI | Zbl

[2] Gennady V. Alekseev Solvability of an inhomogeneous boundary value problem for the stationary magnetohydrodynamic equations for a viscous incompressible fluid, Differ. Equ., Volume 52 (2016) no. 6, pp. 739-748 | DOI | MR | Zbl

[3] Gennady V. Alekseev; Roman V. Brizitskii Control problems for stationary magnetohydrodynamic equations of a viscous heat-conducting fluid under mixed boundary conditions, Comput. Math. Math. Physics., Volume 45 (2005) no. 12, pp. 2049-2065 | Zbl

[4] Gennady V. Alekseev; Roman V. Brizitskii Solvability of the boundary value problem for stationary magnetohydrodynamic equations under mixed boundary conditions for the magnetic field, Appl. Math. Lett., Volume 32 (2014), pp. 13-18 | DOI | MR | Zbl

[5] Chérif Amrouche; Saliha Boukassa Existence and regularity of solution for a model in magnetohydrodynamics, Nonlinear Anal., Theory Methods Appl., Volume 190 (2020), 111602, 20 pages | DOI | MR | Zbl

[6] Chérif Amrouche; María Ángeles Rodriguez-Bellido Stationary Stokes, Oseen and Navier–Stokes equations with singular data, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 2, pp. 597-651 | DOI | MR | Zbl

[7] Chérif Amrouche; María Ángeles Rodriguez-Bellido The Oseen and Navier–Stokes equations in a non-solenoidal framework, Math. Methods Appl. Sci., Volume 39 (2016) no. 17, pp. 5066-5090 | DOI | MR | Zbl

[8] Chérif Amrouche; Nour El Houda Seloula L p -theory for the Navier–Stokes equations with pressure boundary conditions, Discrete Contin. Dyn. Syst., Volume 6 (2013) no. 5, pp. 1113-1137 | DOI | MR | Zbl

[9] Chérif Amrouche; Nour El Houda Seloula L p -theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 37-92 | DOI | MR | Zbl

[10] Roman V. Brizitskii; Dmitry A. Tereshko On the solvability of boundary value problems for the stationary magnetohydrodynamic equations with inhomogeneous mixed boundary conditions, Differ. Equ., Volume 43 (2007) no. 2, pp. 246-258 | DOI | Zbl

[11] Carlos Conca; Carlos Parés Madroñal; Olivier Pironneau; Marc Thiriet Navier–Stokes equations with imposed pressure and velocity fluxes, Int. J. Numer. Methods Fluids, Volume 20 (1995) no. 4, pp. 267-287 | DOI | MR | Zbl

[12] Jien Deng; Zhenzhen Tao; Tong Zhang Iterative penalty finite element methods for the steady incompressible magnetohydrodynamic problem, Comput. Appl. Math., Volume 36 (2017) no. 4, pp. 1637-1657 | DOI | MR | Zbl

[13] Chen Greif; Dan Li; Dominik Schötzau; Xiaoxi Wei A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 2840-2855 | DOI | MR | Zbl

[14] Ralf Hiptmair; Lingxiao Li; Shipeng Mao; Weiying Zheng A fully divergence-free finite element method for magnetohydrodynamic equations, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 4, pp. 659-695 | DOI | MR | Zbl

[15] Weifeng Qiu; Ke Shi A mixed DG method and an HDG method for incompressible magnetohydrodynamics, IMA J. Numer. Anal., Volume 40 (2020) no. 2, pp. 1356-1389 | DOI | MR | Zbl

[16] Dominik Schötzau Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., Volume 96 (2004) no. 4, pp. 771-800 | DOI | MR | Zbl

[17] Nour El Houda Seloula Mathematical analysis and numerical approximation of the Stokes and Navier–Stokes equations with non standard boundary conditions, Ph. D. Thesis, Université de Pau et des Pays de l’Adour, (France) (2010)

[18] Yong Zeng; Zhibing Zhang Existence, regularity and uniqueness of weak solutions with bounded magnetic fields to the steady Hall-MHD system, Calc. Var. Partial Differ. Equ., Volume 59 (2020) no. 2, 84, 16 pages | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique