[Discriminant d'une projection générique d'une singularité minimale de surface normale]
Let (S,0) be a rational complex surface singularity with reduced fundamental cycle, also known as a minimal singularity. Using a fundamental result of M. Spivakovsky, we explain how to describe the equisingularity type of the discriminant curve for a generic projection of (S,0) onto from the resolution of (S,0).
Soit (S,0) une singularité rationnelle de surface complexe à cycle fondamental réduit, appelée aussi singularité minimale. En utilisant un résultat fondamental de M. Spivakovsky, on montre comment le type d'équisingularité de la courbe plane discriminant d'une projection générique de (S,0) sur est déterminé par la résolution de (S,0).
Accepté le :
Publié le :
Romain Bondil 1
@article{CRMATH_2003__337_3_195_0, author = {Romain Bondil}, title = {Discriminant of a generic projection of a minimal normal surface singularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {195--200}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00260-7}, language = {en}, }
Romain Bondil. Discriminant of a generic projection of a minimal normal surface singularity. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 195-200. doi : 10.1016/S1631-073X(03)00260-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00260-7/
[1] On isolated rational singularities of surfaces, Amer. J. Math., Volume 88 (1966), pp. 129-136
[2] Résolution des singularités de surfaces par éclatements normalisés (A. Libgober; M. Tibar, eds.), Trends in Singularities, Birkhäuser, 2002, pp. 31-81
[3] Déformations équisingulières des germes de courbes gauches réduites, Mém. Soc. Math. France, Volume 1 (1980/81), p. 69
[4] Equisingularité générique des familles de surfaces à singularité isolée, Bull. Soc. Math. France, Volume 108 (1980), pp. 259-281
[5] Familles équisingulières de surfaces à singularité isolée, C. R. Acad. Sci. Paris, Sér. A, Volume 280 (1975), pp. 1013-1016
[6] Families of smooth curves on surface singularities and wedges, Ann. Pol. Math., Volume 67 (1997), pp. 179-190
[7] Toward moduli of singular varieties, Comp. Math., Volume 56 (1985), pp. 369-398
[8] Les singularités sandwich, Resolution of Singularities, Progr. Math., 181, Birkhäuser, 2000, pp. 457-483
[9] Variétés polaires locales et classes de Chern des variétés singulières, Ann. Math., Volume 114 (1981), pp. 457-491
[10] Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math., Volume 131 (1990), pp. 411-491
[11] Variétés polaires II, Multiplicités polaires, sections planes et conditions de Whitney, Algebraic Geometry, Proc. La Rabida 1981, Lecture Notes in Math., 961, Springer-Verlag, 1982, pp. 314-491
- On Lipschitz Normally Embedded Singularities, Handbook of Geometry and Topology of Singularities IV (2023), p. 497 | DOI:10.1007/978-3-031-31925-9_10
- On Lipschitz normally embedded complex surface germs, Compositio Mathematica, Volume 158 (2022) no. 3, p. 623 | DOI:10.1112/s0010437x22007357
- Pencils and critical loci on normal surfaces, Revista Matemática Complutense, Volume 34 (2021) no. 3, p. 691 | DOI:10.1007/s13163-020-00366-8
- A characterization of Lipschitz normally embedded surface singularities, Journal of the London Mathematical Society, Volume 101 (2020) no. 2, p. 612 | DOI:10.1112/jlms.12279
- Minimal surface singularities are Lipschitz normally embedded, Journal of the London Mathematical Society, Volume 101 (2020) no. 2, p. 641 | DOI:10.1112/jlms.12280
- Equisingular generic discriminants and Whitney conditions, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 17 (2009) no. 4, p. 661 | DOI:10.5802/afst.1197
- Limit trees and generic discriminants of minimal surface singularities, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 17 (2008) no. 1, p. 37 | DOI:10.5802/afst.1174
Cité par 7 documents. Sources : Crossref
Commentaires - Politique