[Espaces temps einsteinians complets vers le futur]
On démontre l'existence d'espaces temps génériques, à symétrie S1 mais non polarisés, complets dans la direction de l'expansion, pour des données initiales petites.
We prove the existence of vacuum S1 symmetric Einsteinian, unpolarized, space times which are complete in the direction of the expansion, for small initial data.
Accepté le :
Publié le :
Yvonne Choquet-Bruhat 1
@article{CRMATH_2003__337_2_129_0, author = {Yvonne Choquet-Bruhat}, title = {Future complete {\protect\emph{S}\protect\textsuperscript{1}} symmetric {Einsteinian} spacetimes, the unpolarized case}, journal = {Comptes Rendus. Math\'ematique}, pages = {129--136}, publisher = {Elsevier}, volume = {337}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(03)00277-2}, language = {en}, }
Yvonne Choquet-Bruhat. Future complete S1 symmetric Einsteinian spacetimes, the unpolarized case. Comptes Rendus. Mathématique, Volume 337 (2003) no. 2, pp. 129-136. doi : 10.1016/S1631-073X(03)00277-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00277-2/
[1] On the global evolution problem in 2+1 gravity, J. Geom. Phys., Volume 23 (1997) no. 3–4, pp. 1991-2205
[2] Global wave maps on curved spacetimes (Cotsakis; Gibbons, eds.), Mathematical and Quantum Aspects of Relativity and Cosmology, Lecture Notes in Phys., 535, Springer, 1998, pp. 1-30
[3] Wave maps in general relativity (A. Harvey, ed.), On Einstein Path, Springer, 1998, pp. 161-185
[4] Global hyperbolicity and completeness, J. Geom. Phys., Volume 43 (2002) no. 4, pp. 345-350
[5] Y. Choquet-Bruhat, C. DeWitt–Morette, Analysis Manifolds and Physics II, pp. 478–483
[6] Existence theorem for solutions of Einstein equations with 1 parameter spacelike isometry group (H. Brezis; I.E. Segal, eds.), Proc. Sympos. Pure Math., 59, 1996, pp. 67-80
[7] Future global in time Einsteinian spacetimes with U(1) isometry group, Ann. Inst. H. Poincaré, Volume 2 (2001), pp. 1007-1064
[8] Y. Choquet-Bruhat, V. Moncrief, Nonlinear stability of Einsteinian spacetimes with U(1) isometry group, in: Kajitani, Vaillant (Eds.), Partial Differential Equations and Mathematical Physics, in honor of J. Leray, Birkhäuser, to appear
[9] Teichmuller spaces, Math. Ann., Volume 267 (1984), pp. 311-345
[10] Reduction of Einstein equations with spacelike U(1) isometry group, Ann. of Phys., Volume 167 (1986), pp. 118-142
Cité par Sources :
Commentaires - Politique