[Un modèle de fracture pour des problèmes elliptiques avec sauts de flux et de solution]
A new model of fracture for elliptic problems combining flux and solution jumps as immersed boundary conditions is proposed and proved to be well-posed. An application of this model to the flow in fractured porous media is also proposed including the cases of “impermeable fracture” and “fully permeable fracture” satisfying the so-called “cubic law”, as well as intermediate cases. A finite volume scheme on general polygonal meshes is built to solve such problems. Since no unknown is required at the fracture interface, the scheme is as cheap as standard schemes for the same problems without fault. The convergence of the scheme can be proved to the weak solution of the problem. With weak regularity assumptions, we also establish for the discrete H10 and L2 norms some error estimates in
Pour des problèmes elliptiques, un nouveau modèle de fracture combinant des sauts de la solution et du flux comme conditions aux limites immergées est proposé et on montre qu'il est bien posé. On propose également une application de ce modèle à l'écoulement dans des milieux poreux fissurés incluant les cas de « fracture imperméable » et de « fracture totalement perméable » satisfaisant la « loi cubique », ainsi que des cas intermédiaires. Un schéma en volumes finis est construit pour résoudre de tels problèmes sur des maillages polygonaux généraux. Comme aucune inconnue n'est nécessaire sur l'interface de fracture, ce schéma est aussi économique que des schémas standards pour résoudre les mêmes problèmes sans faille. On peut prouver la convergence de ce schéma vers la solution faible du problème. De plus, avec des hypothèses faibles de régularité, on établit pour la norme discrète H10 et pour la norme L2 des estimations d'erreur en
Accepté le :
Publié le :
Philippe Angot 1
@article{CRMATH_2003__337_6_425_0, author = {Philippe Angot}, title = {A model of fracture for elliptic problems with flux and solution jumps}, journal = {Comptes Rendus. Math\'ematique}, pages = {425--430}, publisher = {Elsevier}, volume = {337}, number = {6}, year = {2003}, doi = {10.1016/S1631-073X(03)00300-5}, language = {en}, }
Philippe Angot. A model of fracture for elliptic problems with flux and solution jumps. Comptes Rendus. Mathématique, Volume 337 (2003) no. 6, pp. 425-430. doi : 10.1016/S1631-073X(03)00300-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00300-5/
[1] Ph. Angot, Mathematical and numerical modelling for a fictitious domain method with jump and penalized immersed boundary conditions, Preprint, Thèse HDR, Univ. Méditerranée Aix-Marseille II, sept. 1998
[2] Finite volume methods for non smooth solution of diffusion models; application to imperfect contact problems, Proc. 4th Int. Conf. NMA'98, Sofia (Bulgarie) (O.P. Iliev; M.S. Kaschiev; S.D. Margenov; Bl.H. Sendov; P.S. Vassilevski, eds.), World Sci. Publications (1999), pp. 621-629
[3] Convergence of finite volume methods on general meshes for non smooth solution of elliptic problems with cracks (R. Vilsmeier; F. Benkhaldoun; D. Hänel, eds.), Finite Volumes for Complex Applications II, Hermès, 1999, pp. 215-222
[4] Ph. Angot, A model of fracture for elliptic problems with flux and solution jumps, Preprint L.A.T.P., UMR CNRS 6632 http://www.cmi.univ-mrs.fr, May 2003
[5] Ph. Angot, Th. Gallouët, R. Herbin, in preparation
[6] Flow and Contaminant Transport in Fractured Rock (J. Bear; C.-F. Tsang; G. de Marsily, eds.), Academic Press, San Diego, 1993
[7] Finite volume methods (P.G. Ciarlet; J.-L. Lions, eds.), Handbook of Numerical Analysis, Vol. VII, North-Holland, 2000, pp. 713-1020
[8] A new fault model in geological basin modelling. Application of finite volume scheme and domain decomposition methods (R. Herbin; D. Kröner, eds.), Finite Volumes for Complex Applications III, Hermes Penton Sci. (HPS), 2002, pp. 543-550
[9] Dynamics of Fluids in Fractured Rock (B. Faybishenko; P.A. Witherspoon; S.M. Benson, eds.), Geophysical Monograph Series, 122, American Geophysical Union, Washington, DC, 2000
[10] Generalized cell-centered finite volume methods for flow in porous media with faults (R. Herbin; D. Kröner, eds.), Finite Volumes for Complex Applications III, Hermes Penton Sci. (HPS), 2002, pp. 357-364
- Free convection in fractured porous media: A numerical study, Advances in Water Resources, Volume 202 (2025), p. 104988 | DOI:10.1016/j.advwatres.2025.104988
- Fluid flow analysis of discrete fracture networks using a locally conservative stable mixed finite element method, Computational Geosciences, Volume 29 (2025) no. 2, p. 24 (Id/No 13) | DOI:10.1007/s10596-025-10358-6 | Zbl:8038729
- A reinterpreted discrete fracture model for Darcy–Forchheimer flow in fractured porous media, Advances in Water Resources, Volume 179 (2023), p. 104504 | DOI:10.1016/j.advwatres.2023.104504
- A Unified Analogy-Based Computation Methodology From Elasticity to Electromagnetic-Chemical-Thermal Fields and a Concept of Multifield Sensing, ASME Open Journal of Engineering, Volume 1 (2022) | DOI:10.1115/1.4053910
- Multiscale coupling of FFT-based simulations with the LDC approach, Computer Methods in Applied Mechanics and Engineering, Volume 394 (2022), p. 29 (Id/No 114921) | DOI:10.1016/j.cma.2022.114921 | Zbl:1507.65279
- The fictitious domain method with sharp interface for elasticity systems with general jump embedded boundary conditions, Advances in Applied Mathematics and Mechanics, Volume 13 (2021) no. 1, pp. 119-139 | DOI:10.4208/aamm.oa-2019-0119 | Zbl:1488.65569
- Conservative numerical methods for the reinterpreted discrete fracture model on non-conforming meshes and their applications in contaminant transportation in fractured porous media, Advances in Water Resources, Volume 153 (2021), p. 103951 | DOI:10.1016/j.advwatres.2021.103951
- A mathematical model for thermal single-phase flow and reactive transport in fractured porous media, Journal of Computational Physics, Volume 434 (2021), p. 26 (Id/No 110205) | DOI:10.1016/j.jcp.2021.110205 | Zbl:7508521
- The hybrid dimensional representation of permeability tensor: a reinterpretation of the discrete fracture model and its extension on nonconforming meshes, Journal of Computational Physics, Volume 415 (2020), p. 28 (Id/No 109523) | DOI:10.1016/j.jcp.2020.109523 | Zbl:1440.76089
- A simple embedded discrete fracture-matrix model for a coupled flow and transport problem in porous media, Computer Methods in Applied Mechanics and Engineering, Volume 343 (2019), pp. 572-601 | DOI:10.1016/j.cma.2018.09.003 | Zbl:1440.76147
- Dual Virtual Element Methods for Discrete Fracture Matrix models, Oil Gas Science and Technology – Revue d’IFP Energies nouvelles, Volume 74 (2019), p. 41 | DOI:10.2516/ogst/2019008
- Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 5, pp. 1875-1911 | DOI:10.1051/m2an/2017060 | Zbl:1414.35161
- A double-layer reduced model for fault flow on slipping domains with an hybrid finite volume scheme, Journal of Scientific Computing, Volume 77 (2018) no. 2, pp. 885-910 | DOI:10.1007/s10915-018-0740-8 | Zbl:1404.76256
- Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions, Physical Review E, Volume 95 (2017) no. 6 | DOI:10.1103/physreve.95.063302
- A Review of the XFEM-Based Approximation of Flow in Fractured Porous Media, Advances in Discretization Methods, Volume 12 (2016), p. 47 | DOI:10.1007/978-3-319-41246-7_3
- An analysis and an affordable regularization technique for the spurious force oscillations in the context of direct-forcing immersed boundary methods, Computers Mathematics with Applications, Volume 71 (2016) no. 5, pp. 1089-1113 | DOI:10.1016/j.camwa.2016.01.024 | Zbl:1443.65155
- A model for conductive faults with non-matching grids, Computational Geosciences, Volume 16 (2012) no. 2, pp. 277-296 | DOI:10.1007/s10596-011-9267-x | Zbl:1348.76167
- Fictitious domain methods for two-phase flow energy balance computations in nuclear components, International Journal for Numerical Methods in Fluids, Volume 68 (2012) no. 8, pp. 939-957 | DOI:10.1002/fld.2587 | Zbl:1427.76118
- On the well-posed coupling between free fluid and porous viscous flows, Applied Mathematics Letters, Volume 24 (2011) no. 6, pp. 803-810 | DOI:10.1016/j.aml.2010.07.008 | Zbl:1402.76122
- A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 11-12, pp. 697-702 | DOI:10.1016/j.crma.2010.04.022 | Zbl:1194.35317
- Asymptotic and numerical modelling of flows in fractured porous media, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 43 (2009) no. 2, pp. 239-275 | DOI:10.1051/m2an/2008052 | Zbl:1171.76055
- A general fictitious domain method with immersed jumps and multilevel nested structured meshes, Journal of Computational Physics, Volume 225 (2007) no. 2, pp. 1347-1387 | DOI:10.1016/j.jcp.2007.01.026 | Zbl:1122.65115
- , 17th AIAA Computational Fluid Dynamics Conference (2005) | DOI:10.2514/6.2005-4709
- A unified fictitious domain model for general embedded boundary conditions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 341 (2005) no. 11, pp. 683-688 | DOI:10.1016/j.crma.2005.09.046 | Zbl:1082.65589
- A model of fracture for elliptic problems with flux and solution jumps., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 337 (2003) no. 6, pp. 425-430 | DOI:10.1016/s1631-073x(03)00300-5 | Zbl:1113.76455
Cité par 25 documents. Sources : Crossref, zbMATH
☆ An extended version of this paper with some more details can be found in Angot (Preprint L.A.T.P.).
Commentaires - Politique