[Les hypersurfaces de Coble]
Soit A une variété abélienne principalement polarisée indécomposable, de dimension g. Les fonctions thêta d'ordre 3 plongent A dans un espace projectif de dimension 3g−1, tandis que les fonctions thêta d'ordre 2 plongent la variété de Kummer X=A/{±1} dans un espace projectif de dimension 2g−1. Coble a observé que pour g=2 il existe une unique hypersurface cubique dans qui est singulière le long de A, et pour g=3 une unique hypersurface quartique dans singulière le long de X. Nous expliquons ces faits par une analyse élémentaire des représentations du groupe de Heisenberg correspondant.
Let A be an indecomposable principally polarized abelian variety of dimension g. Third order theta functions embed A in a projective space of dimension 3g−1, while second order theta functions embed the Kummer variety X=A/{±1} in a projective space of dimension 2g−1. Coble observed that for g=2 there is a unique cubic hypersurface in that is singular along A, and for g=3 a unique quartic hypersurface in singular along X. We explain these facts by a simple analysis of the representations of the corresponding Heisenberg group.
Accepté le :
Publié le :
Arnaud Beauville 1
@article{CRMATH_2003__337_3_189_0, author = {Arnaud Beauville}, title = {The {Coble} hypersurfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {189--194}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00302-9}, language = {en}, }
Arnaud Beauville. The Coble hypersurfaces. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 189-194. doi : 10.1016/S1631-073X(03)00302-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00302-9/
[1] Quadratic equations for level-3 abelian surfaces, Abelian Varieties, de Gruyter, Berlin–New York, 1995, pp. 1-18
[2] Complex abelian varieties, Grund. Math. Wiss., Volume 302 (1992)
[3] Point sets and allied cremona groups III, Trans. Amer. Math. Soc., Volume 18 (1917), pp. 331-372
[4] Algebraic geometry and theta functions, Amer. Math. Soc. Colloquium Publ., Volume 10 (1929) (Amer. Math. Soc., Providence, 1982)
[5] Generic Torelli for projective hypersurfaces, Compositio Math., Volume 50 (1983), pp. 325-353
[6] Équations des variétés de Kummer, Math. Ann., Volume 295 (1993), pp. 685-701
[7] Schottky-Jung relations and vectorbundles on hyperelliptic curves, Math. Ann., Volume 281 (1988), pp. 431-449
[8] Theta relations and projective normality of Abelian varieties, Amer. J. Math., Volume 98 (1976), pp. 865-889
[9] Local structure of the moduli space of vector bundles over curves, Comment. Math. Helv., Volume 71 (1996), pp. 373-401
[10] 2θ-linear systems on Abelian varieties, Vector Bundles on Algebraic Varieties, Oxford University Press, 1987, pp. 415-427
[11] A. Ortega, Fibrés de rang 3 sur une courbe de genre 2 et cubique de Coble, in press
[12] Heisenberg invariant quartics and for a curve of genus four, Math. Proc. Cambridge Philos. Soc., Volume 125 (1999), pp. 295-319
- The Coble quadric, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2024.52
- Nested varieties of K3 type, Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), p. 733 | DOI:10.5802/jep.156
- Translating the Discrete Logarithm Problem on Jacobians of Genus 3 Hyperelliptic Curves with
-Isogenies, Journal of Cryptology, Volume 34 (2021) no. 3 | DOI:10.1007/s00145-021-09401-3 - The geometry of the Coble cubic and orbital degeneracy loci, Mathematische Annalen, Volume 379 (2021) no. 1-2, p. 415 | DOI:10.1007/s00208-019-01949-7
- Alternating trilinear forms on a nine-dimensional space and degenerations of (3, 3)-polarized Abelian surfaces, Proceedings of the London Mathematical Society, Volume 110 (2015) no. 3, p. 755 | DOI:10.1112/plms/pdu050
- A structure theorem for 𝒮𝒰_𝒞(2) and the moduli of pointed rational curves, Journal of Algebraic Geometry, Volume 24 (2014) no. 2, p. 283 | DOI:10.1090/s1056-3911-2014-00659-7
- Moduli of Abelian Varieties, Vinberg θ-Groups, and Free Resolutions, Commutative Algebra (2013), p. 419 | DOI:10.1007/978-1-4614-5292-8_13
- The Universal Kummer Threefold, Experimental Mathematics, Volume 22 (2013) no. 3, p. 327 | DOI:10.1080/10586458.2013.816206
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier