Comptes Rendus
Probability Theory/Statistics
Chung–Smirnov property for smoothed distribution function estimator under random censorship
[Propriété de Chung–Smirnov de l'estimateur lissé de la fonction de répartition en présence de censure]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 207-212.

On considère une suite de variables aléatoires iid (Xn)n⩾1 de même fonction de répartition (f.d.r.) F et une autre suite de variables aléatoires (Cn)n⩾1 de f.d.r. G indépendantes de (Xn)n⩾1. On considère un estimateur lissé par convolution de F. Nous montrons que cet estimateur vérifie la propriété de Chung–Smirnov. Dans cette Note, nous étendons les résultats de Winter (1979) et Degenhardt (1993) au cas censuré et celui de Csörgö et Horvath (1983) à l'estimateur lissé avec la même constante CF,G.

Let (Xn)n⩾1 be a sequence of independent and identically distributed (iid) random variables (rv) with common distribution function (df) F and another iid sequence (Cn)n⩾1 with df G independent of (Xn)n⩾1. Here we consider the Smoothed Kaplan–Meier Estimator of F defined as integral of nonparametric density estimators. It is shown that if F satisfies some smoothness conditions, has the Chung–Smirnov property, that is, with probability one,

where CF,G is a constant depending only on F and G (∥·∥T and T are defined below). In this Note, we extend the result of Winter (1979) and Degenhardt (1993) to the censorship model and those of Csörgö and Horvath (1983) to the smoothed estimator with the same constant CF,G.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00311-X

Elias Ould-Saïd 1 ; Ouafae Yazourh-Benrabah 1

1 Université du Littoral Côte d'Opale, LMPA, centre de la Mi-Voix, BP 699, 62228 Calais, France
@article{CRMATH_2003__337_3_207_0,
     author = {Elias Ould-Sa{\"\i}d and Ouafae Yazourh-Benrabah},
     title = {Chung{\textendash}Smirnov property for smoothed distribution function estimator under random censorship},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {207--212},
     publisher = {Elsevier},
     volume = {337},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00311-X},
     language = {en},
}
TY  - JOUR
AU  - Elias Ould-Saïd
AU  - Ouafae Yazourh-Benrabah
TI  - Chung–Smirnov property for smoothed distribution function estimator under random censorship
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 207
EP  - 212
VL  - 337
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00311-X
LA  - en
ID  - CRMATH_2003__337_3_207_0
ER  - 
%0 Journal Article
%A Elias Ould-Saïd
%A Ouafae Yazourh-Benrabah
%T Chung–Smirnov property for smoothed distribution function estimator under random censorship
%J Comptes Rendus. Mathématique
%D 2003
%P 207-212
%V 337
%N 3
%I Elsevier
%R 10.1016/S1631-073X(03)00311-X
%G en
%F CRMATH_2003__337_3_207_0
Elias Ould-Saïd; Ouafae Yazourh-Benrabah. Chung–Smirnov property for smoothed distribution function estimator under random censorship. Comptes Rendus. Mathématique, Volume 337 (2003) no. 3, pp. 207-212. doi : 10.1016/S1631-073X(03)00311-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00311-X/

[1] N. Breslow; J. Crowley A large sample study of the life table and product-limit estimates under random censorship, Ann. Statist., Volume 2 (1974), pp. 437-443

[2] S. Csörgö; L. Horvath The rate of strong uniform consistency for the product-limit estimator, Z. Warsch. Verw. Gebiete, Volume 62 (1983), pp. 411-426

[3] H.J.A. Degenhardt Chung–Smirnov property for perturbed distribution function estimators, Statist. Probab. Lett., Volume 16 (1993), pp. 97-101

[4] R.D. Gill Lectures on Survival Analysis, Lectures on Probability Theory, 1581, Springer-Verlag, 1994

[5] E.M. Kaplan; P. Meier Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc., Volume 53 (1958), pp. 457-481

[6] M. Lemdani; E. Ould-Saı̈d Relative deficiency of the Kaplan–Meier estimator with respect to smoothed estimator, Math. Methods Statist., Volume 10 (2001), pp. 215-234

[7] P. Major; L. Rejtö Strong embedding of the estimator of the distribution function under random censorship, Ann. Statist., Volume 16 (1988), pp. 1113-1132

[8] W. Stute The oscillation behaviour of empirical processes, Ann. Probab., Volume 10 (1982), pp. 86-107

[9] B.B. Winter Convergence rate of perturbed empirical distribution functions, J. Appl. Probab., Volume 16 (1979), pp. 163-173

Cité par Sources :

Commentaires - Politique