Comptes Rendus
Statistics
Mean square convergence for estimators of additive regression under random censorship
[Convergence en moyenne quadratique de l'estimateur de la fonction de régression additive en données censurées]
Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 205-210.

Dans cette Note, nous proposons d'établir la vitesse de convergence en moyenne quadratique de l'estimateur d'une fonction de régression additive en données censurées. Pour construire nos estimateurs, nous combinons la méthode d'intégration marginale à des estimateurs de la fonction de régression multivariée de type Inverse Probability of Censoring Weighted [I.P.C.W.].

In this Note, we establish the mean square convergence rate for estimators of an additive regression function under random censorship. To build our estimator, the marginal integration method is coupled with some Inverse Probability of Censoring Weighted [I.P.C.W.] estimates of the multivariate regression function.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.12.002

Mohammed Debbarh 1 ; Vivian Viallon 1

1 L.S.T.A. université de Paris 6, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2007__344_3_205_0,
     author = {Mohammed Debbarh and Vivian Viallon},
     title = {Mean square convergence for estimators of additive regression under random censorship},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {205--210},
     publisher = {Elsevier},
     volume = {344},
     number = {3},
     year = {2007},
     doi = {10.1016/j.crma.2006.12.002},
     language = {en},
}
TY  - JOUR
AU  - Mohammed Debbarh
AU  - Vivian Viallon
TI  - Mean square convergence for estimators of additive regression under random censorship
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 205
EP  - 210
VL  - 344
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2006.12.002
LA  - en
ID  - CRMATH_2007__344_3_205_0
ER  - 
%0 Journal Article
%A Mohammed Debbarh
%A Vivian Viallon
%T Mean square convergence for estimators of additive regression under random censorship
%J Comptes Rendus. Mathématique
%D 2007
%P 205-210
%V 344
%N 3
%I Elsevier
%R 10.1016/j.crma.2006.12.002
%G en
%F CRMATH_2007__344_3_205_0
Mohammed Debbarh; Vivian Viallon. Mean square convergence for estimators of additive regression under random censorship. Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 205-210. doi : 10.1016/j.crma.2006.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.12.002/

[1] P. Ango-Nze; R. Rios Density estimation in L norm for mixing processes, J. Statist. Plann. Inference, Volume 83 (2000) no. 1, pp. 75-90

[2] R. Beran, Nonparametric regression with randomly censored data, Technical report, Univ. California Press, Berkeley, 1981

[3] C. Camlong-Viot; P. Sarda; P. Vieu Additive time series: the kernel integration method, Math. Methods Statist., Volume 9 (2000) no. 4, pp. 358-375

[4] A. Carbonez; L. Györfi; E.C. van der Meulen Partitioning-estimates of a regression function under random censoring, Statist. Decisions, Volume 13 (1995) no. 1, pp. 21-37

[5] D.M. Dabrowska Nonparametric regression with censored covariates, J. Multivariate Anal., Volume 54 (1995) no. 2, pp. 253-283

[6] P. Deheuvels, G. Derzko, Nonparametric estimation of conditional lifetime distributions under random censorship, in: Advances in Statistical Methods for the Health Sciences: Applications to Cancer and AIDS Studies, Genome Sequence Analysis and Survival Analysis, Springer, New York, 2006, in press

[7] A. Földes; L. Rejtő A L.I.L. type result for the product-limit estimator, Z. Wahrsch. Verw. Gebiete, Volume 56 (1981), pp. 75-86

[8] M.C. Jones; S.J. Davies; B.U. Park Versions of kernel-type regression estimators, J. Amer. Statist. Assoc., Volume 89 (1994), pp. 825-832

[9] E.L. Kaplan; P. Meier Non parametric estimation for incomplete observations, J. Amer. Statist. Assoc., Volume 53 (1958), pp. 457-481

[10] M. Kohler, S. Kul, K. Máthé, Least squares estimates for censored regression, Preprint, Available at http://www.mathematik.uni-stuttgart.de/mathA/lst3/kohler/hfm-pub-en.html, 2006

[11] M. Kohler; K. Máthé; M. Pintér Prediction from randomly right censored data, J. Multivariate Anal., Volume 80 (2002) no. 1, pp. 73-100

[12] O.B. Linton; J.P. Nielsen A kernel method of estimating structured nonparametric regression based on marginal integration, Biometrika, Volume 82 (1995), pp. 93-100

[13] W.K. Newey Kernel estimation of partial means and a general variance estimator, Econometric Theory, Volume 10 (1994) no. 2, pp. 233-253

[14] C.J. Stone Additive regression and other nonparametric models, Ann. Statist., Volume 13 (1985) no. 2, pp. 689-705

Cité par Sources :

Commentaires - Politique