Comptes Rendus
Équation aux dérivées partielles
Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan
Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 249-252.

Nous présentons ici un exemple de champ de vecteurs plan dépendant du temps, borné à divergence nulle, et une solution non nulle bornée du problème de Cauchy homogène pour l'équation de transport associée.

We present here an example of a plane time-dependent bounded divergence-free vector field and a bounded non-zero solution of the homogeneous Cauchy problem for the associated transport equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00330-3

Nicolas Depauw 1

1 Mathématiques, faculté des sciences, 2, rue de la Houssinière, BP 92208, 44322 Nantes cedex 03, France
@article{CRMATH_2003__337_4_249_0,
     author = {Nicolas Depauw},
     title = {Non unicit\'e des solutions born\'ees pour un champ de vecteurs {\protect\emph{BV}} en dehors d'un hyperplan},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {249--252},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00330-3},
     language = {fr},
}
TY  - JOUR
AU  - Nicolas Depauw
TI  - Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 249
EP  - 252
VL  - 337
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00330-3
LA  - fr
ID  - CRMATH_2003__337_4_249_0
ER  - 
%0 Journal Article
%A Nicolas Depauw
%T Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan
%J Comptes Rendus. Mathématique
%D 2003
%P 249-252
%V 337
%N 4
%I Elsevier
%R 10.1016/S1631-073X(03)00330-3
%G fr
%F CRMATH_2003__337_4_249_0
Nicolas Depauw. Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan. Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 249-252. doi : 10.1016/S1631-073X(03)00330-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00330-3/

[1] M. Aizenman On vector fields as generators of flows: a counterexample to Nelson's conjecture, Ann. of Math., Volume 107 (1978) no. 2, pp. 287-296

[2] F. Colombini; N. Lerner Uniqueness of continuous solutions for BV vector fields, Duke Math. J., Volume 111 (2002) no. 2, pp. 357-384

[3] F. Colombini, N. Lerner, Uniqueness of L solutions for a class of conormal BV vector fields, Preprint de Rennes, 2003

[4] F. Colombini, J. Rauch, Unicity and nonunicity for nonsmooth divergence free transport, Séminaire X-EDP 2002-2003, École Polytechnique, in preparation

[5] R. Di Perna; P.-L. Lions Ordinary differential equations transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547

  • Giulia Mescolini; Jules Pitcho; Massimo Sorella On vanishing diffusivity selection for the advection equation, Annali di Matematica Pura ed Applicata (1923 -) (2025) | DOI:10.1007/s10231-025-01543-6
  • Scott Armstrong; Vlad Vicol Anomalous diffusion by fractal homogenization, Annals of PDE, Volume 11 (2025) no. 1, p. 145 (Id/No 2) | DOI:10.1007/s40818-024-00189-6 | Zbl:7996977
  • L. Huysmans; Edriss S. Titi Non-uniqueness inadmissibility of the vanishing viscosity limit of the passive scalar transport equation, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 198 (2025), p. 51 (Id/No 103685) | DOI:10.1016/j.matpur.2025.103685 | Zbl:8014006
  • Jules Pitcho On the lack of selection for the transport equation over a dense set of vector fields, Journal of Functional Analysis, Volume 289 (2025) no. 6, p. 110942 | DOI:10.1016/j.jfa.2025.110942
  • Umberto Pappalettera On measure-preserving selection of solutions of ODEs, Proceedings of the American Mathematical Society, Volume 153 (2025) no. 5, pp. 2037-2051 | DOI:10.1090/proc/17097 | Zbl:8015185
  • Alexey Cheskidov; Xiaoyutao Luo Extreme temporal intermittency in the linear Sobolev transport: almost smooth nonunique solutions, Analysis PDE, Volume 17 (2024) no. 6, pp. 2161-2177 | DOI:10.2140/apde.2024.17.2161 | Zbl:1547.35592
  • Anuj Kumar Nonuniqueness of trajectories on a set of full measure for Sobolev vector fields, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 6, p. 26 (Id/No 114) | DOI:10.1007/s00205-024-02063-y | Zbl:7949017
  • Jules Pitcho A remark on selection of solutions for the transport equation, Journal of Evolution Equations, Volume 24 (2024) no. 3, p. 26 (Id/No 69) | DOI:10.1007/s00028-024-00996-1 | Zbl:1548.35167
  • Maria Colombo; Gianluca Crippa; Massimo Sorella Anomalous dissipation and lack of selection in the Obukhov-Corrsin theory of scalar turbulence, Annals of PDE, Volume 9 (2023) no. 2, p. 48 (Id/No 21) | DOI:10.1007/s40818-023-00162-9 | Zbl:1536.35261
  • Christian Seis Bounds on the rate of enhanced dissipation, Communications in Mathematical Physics, Volume 399 (2023) no. 3, pp. 2071-2081 | DOI:10.1007/s00220-022-04588-3 | Zbl:1514.35324
  • Stefano Bianchini; Martina Zizza Properties of mixing BV vector fields, Communications in Mathematical Physics, Volume 402 (2023) no. 2, pp. 1953-2009 | DOI:10.1007/s00220-023-04780-z | Zbl:1532.35365
  • Gianluca Crippa; Silvia Ligabue A note on the Lagrangian flow associated to a partially regular vector field, Differential Equations and Dynamical Systems, Volume 31 (2023) no. 4, pp. 767-786 | DOI:10.1007/s12591-020-00530-y | Zbl:1527.35335
  • Benjamin Fehrman; Benjamin Gess Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift, Inventiones Mathematicae, Volume 234 (2023) no. 2, pp. 573-636 | DOI:10.1007/s00222-023-01207-3 | Zbl:1527.35425
  • Theodore D. Drivas; Tarek M. Elgindi; Gautam Iyer; In-Jee Jeong Anomalous dissipation in passive scalar transport, Archive for Rational Mechanics and Analysis, Volume 243 (2022) no. 3, pp. 1151-1180 | DOI:10.1007/s00205-021-01736-2 | Zbl:1508.35069
  • Shengyi Zhai; Rongrong Tian Existence and uniqueness of weak solutions for transport equations, Electronic Journal of Mathematical Analysis and Applications EJMAA, Volume 10 (2022) no. 1, pp. 1-14 | Zbl:1513.35468
  • Paolo Bonicatto; Gennaro Ciampa; Gianluca Crippa On the advection-diffusion equation with rough coefficients: weak solutions and vanishing viscosity, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 167 (2022), pp. 204-224 | DOI:10.1016/j.matpur.2022.09.005 | Zbl:1500.35015
  • Jinlong Wei; Guangying Lv; Wei Wang Stochastic transport equation with bounded and Dini continuous drift, Journal of Differential Equations, Volume 323 (2022), pp. 359-403 | DOI:10.1016/j.jde.2022.03.038 | Zbl:1486.60085
  • Yoshikazu Giga; Matthias Hieber; Peter Korn; Edriss S. Titi Mathematical advances in geophysical fluid dynamics. Abstracts from the workshop held November 13–19, 2022, Oberwolfach Rep. 19, No. 4, 2961-3003, 2022 | DOI:10.4171/owr/2022/51 | Zbl:1521.00016
  • Alexey Cheskidov; Xiaoyutao Luo Nonuniqueness of weak solutions for the transport equation at critical space regularity, Annals of PDE, Volume 7 (2021) no. 1, p. 45 (Id/No 2) | DOI:10.1007/s40818-020-00091-x | Zbl:1469.35001
  • Guillaume Lévy Retracted: A uniqueness lemma with applications to regularization and incompressible fluid mechanics, Science China. Mathematics, Volume 64 (2021) no. 4, pp. 711-724 | DOI:10.1007/s11425-018-9477-3 | Zbl:1464.35185
  • Jinlong Wei; Jinqiao Duan; Hongjun Gao; Guangying Lv Stochastic regularization for transport equations, Stochastic and Partial Differential Equations. Analysis and Computations, Volume 9 (2021) no. 1, pp. 105-141 | DOI:10.1007/s40072-020-00171-w | Zbl:1477.60103
  • Stefano Modena; Gabriel Sattig Convex integration solutions to the transport equation with full dimensional concentration, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 37 (2020) no. 5, pp. 1075-1108 | DOI:10.1016/j.anihpc.2020.03.002 | Zbl:1458.35363
  • Gennaro Ciampa; Gianluca Crippa; Stefano Spirito Smooth approximation is not a selection principle for the transport equation with rough vector field, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1, p. 21 (Id/No 13) | DOI:10.1007/s00526-019-1659-0 | Zbl:1428.35082
  • Claude Bardos; Nicolas Besse; Toan T. Nguyen Onsager-type conjecture and renormalized solutions for the relativistic Vlasov-Maxwell system, Quarterly of Applied Mathematics, Volume 78 (2020) no. 2, pp. 193-217 | DOI:10.1090/qam/1549 | Zbl:1431.35189
  • F. Ben Belgacem; P.-E. Jabin Convergence of numerical approximations to non-linear continuity equations with rough force fields, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 2, pp. 509-547 | DOI:10.1007/s00205-019-01396-3 | Zbl:1437.35475
  • Stefano Modena; László jun. Székelyhidi Non-renormalized solutions to the continuity equation, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 6, p. 30 (Id/No 208) | DOI:10.1007/s00526-019-1651-8 | Zbl:1428.35005
  • Giovanni Alberti; Gianluca Crippa; Anna L. Mazzucato Exponential self-similar mixing by incompressible flows, Journal of the American Mathematical Society, Volume 32 (2019) no. 2, pp. 445-490 | DOI:10.1090/jams/913 | Zbl:1456.35158
  • Ibrokhimbek Akramov; Emil Wiedemann Renormalization of active scalar equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 179 (2019), pp. 254-269 | DOI:10.1016/j.na.2018.08.018 | Zbl:1419.35135
  • Gianluca Crippa; Renato Lucà; Christian Schulze Polynomial mixing under a certain stationary Euler flow, Physica D, Volume 394 (2019), pp. 44-55 | DOI:10.1016/j.physd.2019.01.009 | Zbl:1451.76035
  • Wentao Cao; László Székelyhidi Jr. Very weak solutions to the two-dimensional Monge-Ampére equation, Science China. Mathematics, Volume 62 (2019) no. 6, pp. 1041-1056 | DOI:10.1007/s11425-018-9516-7 | Zbl:1421.35185
  • Didier Bresch; Pierre-Emmanuel Jabin Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor, Annals of Mathematics. Second Series, Volume 188 (2018) no. 2, pp. 577-684 | DOI:10.4007/annals.2018.188.2.4 | Zbl:1405.35133
  • Stefano Modena; László jun. Székelyhidi Non-uniqueness for the transport equation with Sobolev vector fields, Annals of PDE, Volume 4 (2018) no. 2, p. 38 (Id/No 18) | DOI:10.1007/s40818-018-0056-x | Zbl:1411.35066
  • Guillaume Lévy A uniqueness lemma with applications to regularization and incompressible fluid mechanics, Communications in Contemporary Mathematics, Volume 20 (2018) no. 3, p. 18 (Id/No 1750048) | DOI:10.1142/s0219199717500481 | Zbl:1516.35007
  • Valentino Magnani; Dario Trevisan On Lipschitz vector fields and the Cauchy problem in homogeneous groups, Communications in Contemporary Mathematics, Volume 20 (2018) no. 5, p. 21 (Id/No 1750057) | DOI:10.1142/s0219199717500572 | Zbl:1394.53038
  • Guillaume Lévy On an anisotropic Serrin criterion for weak solutions of the Navier-Stokes equations, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 117 (2018), pp. 123-145 | DOI:10.1016/j.matpur.2018.06.004 | Zbl:1406.35230
  • Luigi Ambrosio; Dario Trevisan Lecture notes on the DiPerna-Lions theory in abstract measure spaces, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 26 (2017) no. 4, pp. 729-766 | DOI:10.5802/afst.1551 | Zbl:1402.35003
  • Yao Yao; Andrej Zlatoš Mixing and un-mixing by incompressible flows, Journal of the European Mathematical Society (JEMS), Volume 19 (2017) no. 7, pp. 1911-1948 | DOI:10.4171/jems/709 | Zbl:1369.35071
  • Gianluca Crippa; Christian Schulze Cellular mixing with bounded palenstrophy, M3AS. Mathematical Models Methods in Applied Sciences, Volume 27 (2017) no. 12, pp. 2297-2320 | DOI:10.1142/s0218202517500452 | Zbl:1379.35236
  • Luigi Ambrosio Well posedness of ODE's and continuity equations with nonsmooth vector fields, and applications, Revista Matemática Complutense, Volume 30 (2017) no. 3, pp. 427-450 | DOI:10.1007/s13163-017-0244-3 | Zbl:1380.37039
  • S. Bianchini; N. A. Gusev Steady nearly incompressible vector fields in two-dimension: chain rule and renormalization, Archive for Rational Mechanics and Analysis, Volume 222 (2016) no. 2, pp. 451-505 | DOI:10.1007/s00205-016-1006-y | Zbl:1359.35145
  • Pierre-Emmanuel Jabin Critical non-Sobolev regularity for continuity equations with rough velocity fields, Journal of Differential Equations, Volume 260 (2016) no. 5, pp. 4739-4757 | DOI:10.1016/j.jde.2015.11.028 | Zbl:1347.35075
  • P.-E. Jabin; N. Masmoudi Diperna-Lions flow for relativistic particles in an electromagnetic field, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 3, pp. 1029-1067 | DOI:10.1007/s00205-015-0850-5 | Zbl:1317.35249
  • Luigi Ambrosio; Maria Colombo; Alessio Figalli Existence and uniqueness of maximal regular flows for non-smooth vector fields, Archive for Rational Mechanics and Analysis, Volume 218 (2015) no. 2, pp. 1043-1081 | DOI:10.1007/s00205-015-0875-9 | Zbl:1348.34039
  • Giovanni Alberti; Gianluca Crippa; Anna L. Mazzucato Exponential self-similar mixing and loss of regularity for continuity equations, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 352 (2014) no. 11, pp. 901-906 | DOI:10.1016/j.crma.2014.08.021 | Zbl:1302.35241
  • Gianluca Crippa; Carlotta Donadello; Laura V. Spinolo Initial-boundary value problems for continuity equations with BV coefficients, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 102 (2014) no. 1, pp. 79-98 | DOI:10.1016/j.matpur.2013.11.002 | Zbl:1292.35092
  • François Bouchut; Gianluca Crippa Lagrangian flows for vector fields with gradient given by a singular integral, Journal of Hyperbolic Differential Equations, Volume 10 (2013) no. 2, pp. 235-282 | DOI:10.1142/s0219891613500100 | Zbl:1275.35076
  • Mario Maurelli Wiener chaos and uniqueness for stochastic transport equation, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 349 (2011) no. 11-12, pp. 669-672 | DOI:10.1016/j.crma.2011.05.006 | Zbl:1220.60037
  • Luigi Ambrosio The flow associated to weakly differentiable vector fields: recent results and open problems, Nonlinear conservation laws and applications. Proceedings of the summer program, IMA, Minneapolis, MN, USA, July 13–31, 2009, New York, NY: Springer, 2011, pp. 181-193 | DOI:10.1007/978-1-4419-9554-4_7 | Zbl:1248.35048
  • Luigi Ambrosio; Gianluca Crippa; Alessio Figalli; Laura V. Spinolo Existence and uniqueness results for the continuity equation and applications to the chromatography system, Nonlinear conservation laws and applications. Proceedings of the summer program, IMA, Minneapolis, MN, USA, July 13–31, 2009, New York, NY: Springer, 2011, pp. 195-204 | DOI:10.1007/978-1-4419-9554-4_8 | Zbl:1248.35119
  • Nicolas Champagnat; Pierre-Emmanuel Jabin Well posedness in any dimension for Hamiltonian flows with non BV force terms, Communications in Partial Differential Equations, Volume 35 (2010) no. 5, pp. 786-816 | DOI:10.1080/03605301003646705 | Zbl:1210.34010
  • F. Flandoli; M. Gubinelli; E. Priola Well-posedness of the transport equation by stochastic perturbation, Inventiones Mathematicae, Volume 180 (2010) no. 1, pp. 1-53 | DOI:10.1007/s00222-009-0224-4 | Zbl:1200.35226
  • Pierre-Emmanuel Jabin Differential equations with singular fields, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 94 (2010) no. 6, pp. 597-621 | DOI:10.1016/j.matpur.2010.07.001 | Zbl:1217.34015
  • Piotr Bogusław Mucha Transport equation: extension of classical results for divbBMO, Journal of Differential Equations, Volume 249 (2010) no. 8, pp. 1871-1883 | DOI:10.1016/j.jde.2010.07.015 | Zbl:1221.35012
  • G. Alberti; S. Bianchini; G. Crippa Divergence-free vector fields in R2, Journal of Mathematical Sciences (New York), Volume 170 (2010) no. 3, pp. 283-293 | DOI:10.1007/s10958-010-0085-9 | Zbl:1304.35214
  • Luigi Ambrosio; Gianluca Crippa; Alessio Figalli; Laura V. Spinolo Some New Well-Posedness Results for Continuity and Transport Equations, and Applications to the Chromatography System, SIAM Journal on Mathematical Analysis, Volume 41 (2009) no. 5, p. 1890 | DOI:10.1137/090754686
  • Luigi Ambrosio Transport Equation and Cauchy Problem for Non-Smooth Vector Fields, Calculus of Variations and Nonlinear Partial Differential Equations, Volume 1927 (2008), p. 1 | DOI:10.1007/978-3-540-75914-0_1
  • Luigi Ambrosio Transport equation and Cauchy problem forBVvector fields and applications, Journées équations aux dérivées partielles (2008), p. 1 | DOI:10.5802/jedp.1
  • Luigi Ambrosio; Gianluca Crippa Existence, Uniqueness, Stability and Differentiability Properties of the Flow Associated to Weakly Differentiable Vector Fields, Transport Equations and Multi-D Hyperbolic Conservation Laws, Volume 5 (2008), p. 3 | DOI:10.1007/978-3-540-76781-7_1
  • Olivier Besson; Jérôme Pousin Solution for linear conservation laws with velocity fields in L, Archive for Rational Mechanics and Analysis, Volume 186 (2007) no. 1, pp. 159-175 | DOI:10.1007/s00205-007-0058-4 | Zbl:1221.35103
  • Ferruccio Colombini; Jeffrey Rauch Uniqueness in the Cauchy problem for transport in R2 and R1+2, Journal of Differential Equations, Volume 211 (2005) no. 1, pp. 162-167 | DOI:10.1016/j.jde.2004.06.007 | Zbl:1134.35311
  • Nicolas Lerner Transport equations with partially BV velocities, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 3 (2004) no. 4, pp. 681-703 | Zbl:1170.35362
  • Luigi Ambrosio Transport equation and Cauchy problem for BV vector fields, Inventiones mathematicae, Volume 158 (2004) no. 2, p. 227 | DOI:10.1007/s00222-004-0367-2

Cité par 62 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: