[Minimiseurs de l'énergie de Ginzburg–Landau avec degrés prescrits : dépendance du domaine]
On étudie des minimiseurs de l'énergie de Ginzburg–Landau dans un domaine annulaire à trous. Les conditions aux limites sont des degrés prescrits : degrés 1 et −1 sur le bord du domaine annulaire, degré 0 sur les bords des trous. En fonction de la H1-capacité du domaine, les minimiseurs ont deux types de comportement, qualitativement différents. On décrit aussi le comportement des minimiseurs quand le paramètre de Ginzburg–Landau tend vers ∞.
We study minimizers of the Ginzburg–Landau functional in an annular type domain with holes. We assume degrees 1 and −1 on the boundary of the annulus, degree 0 on the boundaries of the holes. Two types of qualitatively different behavior of minimizers occur, depending on the value of the H1-capacity of the domain. We also describe the asymptotic behavior of minimizers as the coherency length tends to ∞.
Accepté le :
Publié le :
Leonid Berlyand 1 ; Petru Mironescu 2
@article{CRMATH_2003__337_6_375_0, author = {Leonid Berlyand and Petru Mironescu}, title = {Ginzburg{\textendash}Landau minimizers with prescribed degrees: dependence on domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {375--380}, publisher = {Elsevier}, volume = {337}, number = {6}, year = {2003}, doi = {10.1016/S1631-073X(03)00331-5}, language = {en}, }
Leonid Berlyand; Petru Mironescu. Ginzburg–Landau minimizers with prescribed degrees: dependence on domain. Comptes Rendus. Mathématique, Volume 337 (2003) no. 6, pp. 375-380. doi : 10.1016/S1631-073X(03)00331-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00331-5/
[1] Effective properties of superconducting and superfluid composites, Int. J. Modern Phys. B, Volume 12 (1998), pp. 3063-3073
[2] Homogenization of harmonic maps and superconducting composites, SIAM J. Appl. Math., Volume 59 (1999), pp. 1892-1916
[3] L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers with prescribed degrees: emergence of vortices, dependence on domain and on coherency length, in press
[4] Symmetry breaking in annular domains for a Ginzburg–Landau superconductivity model, Proceedings of IUTAM 99/4 Symposium (Sydney, Australia), Kluwer Academic, 1999
[5] Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders, Arch. Rational Mech. Anal., Volume 118 (1992), pp. 149-168
[6] Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var., Volume 1 (1993), pp. 123-148
[7] Ginzburg–Landau Vortices, Birkhäuser, Boston, MA, 1994
[8] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477
[9] A boundary value problem related to the Ginzburg–Landau problem, Comm. Math. Phys., Volume 142 (1991), pp. 1-23
[10] Stability of superfluid flow in an annulus, Phys. Rev. Lett., Volume 17 (1966), pp. 747-750
[11] On uniqueness of vector-valued minimizers of the Ginzburg–Landau functional in annular domains, Calc. Var., Volume 14 (2002), pp. 213-232
[12] Ginzburg–Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal., Volume 27 (1996), pp. 1360-1385
[13] Ginzburg–Landau type energy with discontinuous constraint, J. d'Analyse, Volume 77 (1999), pp. 1-26
[14] Sobolev Spaces, Springer-Verlag, 1985
[15] Explicit bounds for solutions to a Ginzburg–Landau type equation, Rev. Roumaine Math. Pures Appl., Volume 41 (1996), pp. 263-271
Cité par Sources :
Commentaires - Politique