Soit G un groupe de Lie complexe semisimple simplement connexe, et
Let G be a complex simply connected semisimple Lie group, and let
Accepté le :
Publié le :
Sophie Morier-Genoud 1
@article{CRMATH_2003__337_6_371_0, author = {Sophie Morier-Genoud}, title = {Rel\`evement g\'eom\'etrique de la base canonique et involution de {Sch\"utzenberger}}, journal = {Comptes Rendus. Math\'ematique}, pages = {371--374}, publisher = {Elsevier}, volume = {337}, number = {6}, year = {2003}, doi = {10.1016/j.crma.2003.07.001}, language = {fr}, }
Sophie Morier-Genoud. Relèvement géométrique de la base canonique et involution de Schützenberger. Comptes Rendus. Mathématique, Volume 337 (2003) no. 6, pp. 371-374. doi : 10.1016/j.crma.2003.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.07.001/
[1] Parametrization of canonical bases and totally positive matrices, Adv. Math., Volume 122 (1996), pp. 49-149
[2] Canonical bases for the quantum group of type Ar, and piecewise-linear combinatorics, Duke Math. J., Volume 143 (1996), pp. 473-502
[3] Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., Volume 82 (2001), pp. 77-128
[4] Toric degenerations of Schubert varieties, Transf. Groups, Volume 7 (2002) no. 1, pp. 51-60
[5] P. Caldero, R. Marsh, S. Morier-Genoud, Realisation of the Lusztig's cone, Preprint
[6] On crystal bases, Canad. Math. Soc., Conference Proceed, 16, 1995, pp. 155-195
[7] Introduction to Quantum Groups, Progr. Math., 110, Birkhäuser, 1993
[8] S. Morier-Genoud, Semi-toric degenerations of Richardson varieties, Preprint
- Combinatorics of canonical bases revisited: string data in type A, Transformation Groups, Volume 27 (2022) no. 3, pp. 867-895 | DOI:10.1007/s00031-021-09668-7 | Zbl:1512.17013
- Polyhedral parametrizations of canonical bases cluster duality, Advances in Mathematics, Volume 369 (2020), p. 40 (Id/No 107178) | DOI:10.1016/j.aim.2020.107178 | Zbl:1453.13065
- Simplices in Newton-Okounkov bodies and the Gromov width of coadjoint orbits, Bulletin of the London Mathematical Society, Volume 50 (2018) no. 2, pp. 202-218 | DOI:10.1112/blms.12130 | Zbl:1390.53083
- Reflections in a crystal, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 350 (2012) no. 23-24, pp. 999-1002 | DOI:10.1016/j.crma.2012.11.012 | Zbl:1254.17023
- MV-polytopes via affine buildings, Duke Mathematical Journal, Volume 155 (2010) no. 3, pp. 433-482 | DOI:10.1215/00127094-2010-062 | Zbl:1209.22007
- On Mirković-Vilonen cycles and crystal combinatorics., Representation Theory, Volume 12 (2008), pp. 83-130 | DOI:10.1090/s1088-4165-08-00322-1 | Zbl:1217.20028
- Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties, Transactions of the American Mathematical Society, Volume 360 (2008) no. 1, pp. 215-235 | DOI:10.1090/s0002-9947-07-04216-x | Zbl:1128.14037
- On the combinatorics of crystal graphs. I: Lusztig's involution, Advances in Mathematics, Volume 211 (2007) no. 1, pp. 204-243 | DOI:10.1016/j.aim.2006.08.002 | Zbl:1129.05058
- The crystal structure on the set of Mirković-Vilonen polytopes, Advances in Mathematics, Volume 215 (2007) no. 1, pp. 66-93 | DOI:10.1016/j.aim.2007.03.012 | Zbl:1134.14028
- Realisation of Lusztig cones, Representation Theory of the American Mathematical Society, Volume 8 (2004) no. 17, p. 458 | DOI:10.1090/s1088-4165-04-00225-0
Cité par 10 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier