[Sous-groupes d'indice fini des groupes profinis]
Le résultat principal est que tout sous-groupe d'indice fini dans un groupe profini de type fini est ouvert. Par conséquent, la topologie d'un tel groupe est uniquement déterminée par la structure de groupe sous-jacente. Ce résultat se déduit d'un « théorème d'uniformité » pour les groupes finis : soit w un mot tel que la variété de groupes associée est localement finie, et soit d un entier. Si G est un groupe fini ayant d générateurs, alors chaque élément du sous-groupe verbal w(G) est produit de fw(d) valeurs de w dans G. On obtient des résultats analogues pour le sous-groupe dérivé.
We prove that every subgroup of finite index in a (topologically) finitely generated profinite group is open. This implies that the topology in such a group is uniquely determined by the group structure. The result follows from a ‘uniformity theorem’ about finite groups: given a group word w that defines a locally finite variety and a natural number d, there exists f=fw(d) such that in every finite d-generator group G, each element of the verbal subgroup w(G) is a product of f w-values. Similar methods show that in a finite d-generator group, each element of the derived group is a product of g(d) commutators; this implies that the (abstract) derived group in any finitely generated profinite group is closed.
Accepté le :
Publié le :
Nikolay Nikolov 1 ; Dan Segal 2
@article{CRMATH_2003__337_5_303_0, author = {Nikolay Nikolov and Dan Segal}, title = {Finite index subgroups in profinite groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {303--308}, publisher = {Elsevier}, volume = {337}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00349-2}, language = {en}, }
Nikolay Nikolov; Dan Segal. Finite index subgroups in profinite groups. Comptes Rendus. Mathématique, Volume 337 (2003) no. 5, pp. 303-308. doi : 10.1016/S1631-073X(03)00349-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00349-2/
[1] Finite linear groups and bounded generation, Duke Math. J., Volume 107 (2001), pp. 159-171
[2] Diameters of finite simple groups: sharp bounds and applications, Ann. of Math., Volume 154 (2001), pp. 383-406
[3] Varieties of Groups, Ergeb. Math., 37, Springer-Verlag, Berlin, 1967
[4] N. Nikolov, Power subgroups of profinite groups. D.Phil. thesis, University of Oxford, 2002
[5] N. Nikolov, On the commutator width of perfect groups, Bull. London Math. Soc., in press
[6] Identical relations in finite groups, J. Algebra, Volume 1 (1964), pp. 11-39
[7] Width of verbal subgroups in solvable groups, Algebra i Logika, Volume 21 (1982), pp. 60-72 (in Russian). English translation Algebra and Logic, 21, 1982, pp. 41-49
[8] Profinite Groups, Ergeb. Math. (3), 40, Springer, Berlin, 2000
[9] Closed subgroups of profinite groups, Proc. London Math. Soc. (3), Volume 81 (2000), pp. 29-54
[10] On simple pseudofinite groups, J. London Math. Soc. (2), Volume 51 (1995), pp. 471-490
-
-shadows for the gentle version of the Grothendieck-Teichmüller group, Journal of Pure and Applied Algebra, Volume 229 (2025) no. 1, p. 40 (Id/No 107819) | DOI:10.1016/j.jpaa.2024.107819 | Zbl:7975216 - Iwasawa cohomology of analytic
-modules, Acta Arithmetica, Volume 216 (2024) no. 2, pp. 123-176 | DOI:10.4064/aa230512-1-7 | Zbl:7958561 - On the elementary theory of graph products of groups, Dissertationes Mathematicae, Volume 595 (2024), pp. 1-92 | DOI:10.4064/dm850-4-2024 | Zbl:7922308
- On the lattice of closed subgroups of a profinite group, International Journal of Algebra and Computation, Volume 34 (2024) no. 4, pp. 515-542 | DOI:10.1142/s0218196724500206 | Zbl:1543.20033
- On quotients of Coxeter groups, Journal of Algebra, Volume 639 (2024), pp. 516-531 | DOI:10.1016/j.jalgebra.2023.09.048 | Zbl:1531.20051
-
-adic Hodge theory for Artin stacks, Memoirs of the American Mathematical Society, 1528, Providence, RI: American Mathematical Society (AMS), 2024 | DOI:10.1090/memo/1528 | Zbl:7975521 - Simple groups with infinite verbal width and the same positive theory as free groups, Israel Journal of Mathematics, Volume 254 (2023) no. 1, pp. 39-56 | DOI:10.1007/s11856-022-2384-5 | Zbl:1515.20153
- The pro-norm of a profinite group, Israel Journal of Mathematics, Volume 254 (2023) no. 1, pp. 399-429 | DOI:10.1007/s11856-022-2404-5 | Zbl:1522.20108
- The congruence subgroup problem for finitely generated nilpotent groups, Journal of Group Theory, Volume 25 (2022) no. 3, pp. 411-432 | DOI:10.1515/jgth-2021-0039 | Zbl:1511.20091
- Group-theoreticity of numerical invariants and distinguished subgroups of configuration space groups, Kodai Mathematical Journal, Volume 45 (2022) no. 3, pp. 295-348 | DOI:10.2996/kmj45301 | Zbl:1511.14050
- Introduction to Mono-anabelian Geometry, Publications mathématiques de Besançon. Algèbre et théorie des nombres (2022), p. 5 | DOI:10.5802/pmb.42
- Profinite topologies, Handbook of automata theory. Volume I. Theoretical foundations, Berlin: European Mathematical Society (EMS), 2021, pp. 615-652 | DOI:10.4171/automata-1/17 | Zbl:1511.68176
- Homotopic and geometric Galois theory. Abstracts from the workshop held March 7–13, 2021 (online meeting), Oberwolfach Rep. 18, No. 1, 663-744, 2021 | DOI:10.4171/owr/2021/12 | Zbl:1487.00035
- Inter-universal Teichmüller theory. I: Construction of Hodge theaters, Publications of the Research Institute for Mathematical Sciences, Kyoto University, Volume 57 (2021) no. 1-2, pp. 3-207 | DOI:10.4171/prims/57-1-1 | Zbl:1465.14002
- The congruence subgroup problem for the free metabelian group on
generators, Groups, Geometry, and Dynamics, Volume 14 (2020) no. 3, pp. 729-764 | DOI:10.4171/ggd/561 | Zbl:1472.20118 - Profinite Groups and Semigroups, Profinite Semigroups and Symbolic Dynamics, Volume 2274 (2020), p. 25 | DOI:10.1007/978-3-030-55215-2_3
- The IA-congruence kernel of high rank free metabelian groups, Annals of
-Theory, Volume 4 (2019) no. 3, pp. 383-438 | DOI:10.2140/akt.2019.4.383 | Zbl:1430.19004 - A restricted Magnus property for profinite surface groups, Transactions of the American Mathematical Society, Volume 371 (2019) no. 1, pp. 729-753 | DOI:10.1090/tran/7311 | Zbl:1502.20019
- On the group of continuous automorphisms of some profinite groups, Lobachevskii Journal of Mathematics, Volume 39 (2018) no. 2, pp. 243-251 | DOI:10.1134/s1995080218020191 | Zbl:1406.20037
- Continuity conditions for finite-dimensional locally bounded representations of connected locally compact groups, Russian Journal of Mathematical Physics, Volume 25 (2018) no. 3, pp. 345-382 | DOI:10.1134/s1061920818030081 | Zbl:1401.22012
- Algorithmically complex residually finite groups, Bulletin of Mathematical Sciences, Volume 7 (2017) no. 2, pp. 309-352 | DOI:10.1007/s13373-017-0103-z | Zbl:1423.20022
- Finiteness of profinite groups with a rational probabilistic zeta function., Communications in Algebra, Volume 44 (2016) no. 2, pp. 787-795 | DOI:10.1080/00927872.2014.990023 | Zbl:1344.20039
- Some subgroups of the general linear group of order two over the ring of
-adic integers., -Adic Numbers, Ultrametric Analysis, and Applications, Volume 6 (2014) no. 3, pp. 218-233 | DOI:10.1134/s2070046614030054 | Zbl:1317.20045 - Action of the Grothendieck-Teichmüller group on torsion elements of full Teichmüller modular groups in genus zero, Journal de Théorie des Nombres de Bordeaux, Volume 24 (2012) no. 3, pp. 605-622 | DOI:10.5802/jtnb.813 | Zbl:1278.14040
- Witt-Burnside ring and Burnside ring over a special
-ring, Journal of Algebra, Volume 356 (2012) no. 1, pp. 133-157 | DOI:10.1016/j.jalgebra.2012.01.020 | Zbl:1273.13039 - Group-theoretical generalization of necklace polynomials, Journal of Algebraic Combinatorics, Volume 35 (2012) no. 3, pp. 389-420 | DOI:10.1007/s10801-011-0307-3 | Zbl:1376.05008
- Green index in semigroups: generators, presentations, and automatic structures., Semigroup Forum, Volume 85 (2012) no. 3, pp. 448-476 | DOI:10.1007/s00233-012-9406-2 | Zbl:1270.20059
- Finite index subgroups and verbal subgroups in profinite groups, Séminaire Bourbaki. Volume 2009/2010. Exposés 1012–1026, Paris: Société Mathématique de France (SMF), 2011, p. 387 | Zbl:1356.20014
- The congruence subgroup property for the hyperelliptic modular group: the open surface case, Hiroshima Mathematical Journal, Volume 39 (2009) no. 3, pp. 351-362 | DOI:10.32917/hmj/1257544213 | Zbl:1209.14023
- Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture, Journal of Mathematical Sciences (New York), Volume 159 (2009) no. 5, pp. 653-751 | DOI:10.1007/s10958-009-9466-3 | Zbl:1187.22014
- Commutator Length of Finitely Generated Linear Groups, International Journal of Mathematics and Mathematical Sciences, Volume 2008 (2008) no. 1 | DOI:10.1155/2008/281734
- Pro-finite
-adic Lie algebras, Journal of Algebra, Volume 319 (2008) no. 1, pp. 205-234 | DOI:10.1016/j.jalgebra.2007.08.035 | Zbl:1181.17009 - Subgroup separability and virtual retractions of groups, Topology, Volume 47 (2008) no. 3, p. 137 | DOI:10.1016/j.top.2006.04.001
- Transfer of Krull dimension, lying-over, and going-down to the fixed ring, Communications in Algebra, Volume 35 (2007) no. 4, pp. 1227-1247 | DOI:10.1080/00927870601142231 | Zbl:1121.13009
- The true prosoluble completion of a group: examples and open problems., Geometriae Dedicata, Volume 124 (2007), pp. 5-26 | DOI:10.1007/s10711-006-9103-y | Zbl:1138.20027
- Проблема Каждана - Мильмана для полупростых компактных групп Ли, Успехи математических наук, Volume 62 (2007) no. 1, p. 123 | DOI:10.4213/rm2696
- Profinite groups, profinite completions and a conjecture of Moore., Advances in Mathematics, Volume 201 (2006) no. 1, pp. 63-76 | DOI:10.1016/j.aim.2004.11.005 | Zbl:1107.20002
- Varieties of finite supersolvable groups with the M. Hall property., Mathematische Annalen, Volume 335 (2006) no. 4, pp. 853-877 | DOI:10.1007/s00208-006-0767-2 | Zbl:1117.20024
- Profinite Teichmüller theory, Mathematische Nachrichten, Volume 279 (2006) no. 9-10, p. 953 | DOI:10.1002/mana.200510405
- Continuity conditions for finite-dimensional representations of some locally bounded groups, Russian Journal of Mathematical Physics, Volume 13 (2006) no. 4, pp. 438-457 | DOI:10.1134/s1061920806040078 | Zbl:1117.22003
- The direct product theorem for profinite groups, jgth, Volume 9 (2006) no. 3, p. 317 | DOI:10.1515/jgt.2006.021
- A probabilistic zeta function for arithmetic groups., International Journal of Algebra and Computation, Volume 15 (2005) no. 5-6, pp. 1053-1059 | DOI:10.1142/s0218196705002633 | Zbl:1098.20025
- On subgroups of finite index in compact Hausdorff groups., Archiv der Mathematik, Volume 80 (2003) no. 2, pp. 123-129 | DOI:10.1007/s00013-003-0786-0 | Zbl:1039.20011
- A note on the finite images of profinite groups., Illinois Journal of Mathematics, Volume 47 (2003) no. 1-2, pp. 567-570 | Zbl:1033.20030
Cité par 44 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier