[Sur les ensembles de sommes et produits multiples d'ensembles finis d'entiers]
Soit
Let
Accepté le :
Publié le :
Jean Bourgain 1 ; Mei-Chu Chang 2
@article{CRMATH_2003__337_8_499_0, author = {Jean Bourgain and Mei-Chu Chang}, title = {On multiple sum and product sets of finite sets of integers}, journal = {Comptes Rendus. Math\'ematique}, pages = {499--503}, publisher = {Elsevier}, volume = {337}, number = {8}, year = {2003}, doi = {10.1016/j.crma.2003.08.010}, language = {en}, }
Jean Bourgain; Mei-Chu Chang. On multiple sum and product sets of finite sets of integers. Comptes Rendus. Mathématique, Volume 337 (2003) no. 8, pp. 499-503. doi : 10.1016/j.crma.2003.08.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.08.010/
[1] On the Erdős–Volkmann and Katz–Tao Ring Conjectures, Geom. Funct. Anal., Volume 13 (2003)
[2] The Erdős–Szemerédi problem on sum set and product set, Ann. of Math., Volume 157 (2003), pp. 939-957
[3] Convexity and sumsets, J. Number Theory, Volume 83 (2000) no. 2, pp. 194-201
[4] On Sums and Products of Integers, Stud. Pure Math., Birkhäuser, Basel, 1983 (pp. 213–218)
[5] S. Konjagin, Private communication
[6] Additive Number Theory, Inverse Problems and the Geometry of Sumsets, Graduate Text in Math., 165, Springer-Verlag, New York, 1996
[7] Trigonometric series with gaps, J. Math. Mech., Volume 9 (1960), pp. 203-227
[8] J. Solymosi, On the number of sums and products, Preprint, 2003
- Few products, many h-fold sums, International Journal of Number Theory, Volume 14 (2018) no. 08, p. 2107 | DOI:10.1142/s1793042118501270
- None of the Above, Unsolved Problems in Number Theory, Volume 1 (2004), p. 365 | DOI:10.1007/978-0-387-26677-0_7
Cité par 2 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier