Comptes Rendus
Probability Theory/Statistics
Jensen's inequality for g-expectation, Part 2
[L'inégalité de Jensen pour la g-espérance, 2ème partie]
Comptes Rendus. Mathématique, Volume 337 (2003) no. 12, pp. 797-800.

Chen et al. (C. R. Acad. Sci. Paris, Ser. I 337 (11) (2003)) a étudié l'inégalité de Jensen pour la g-espérance sous la prétention que g n'est pas fonction de (t,y). Comme suite a cette étude, nous considérons les applications de l'inégalité de Jensen dans cet article.

Chen et al. (C. R. Acad. Sci. Paris, Ser. I 337 (11) (2003)) studied a Jensen's inequality for g-expectation under the assumption that g does not depend on (t,y). In this Note we consider some applications of this inequality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.09.037

Zengjing Chen 1 ; Reg Kulperger 2 ; Long Jiang 1

1 Department of Mathematics, Shandong University, Jinan, 250100, China
2 Department of Statistical and Actuarial Science, The University of Western Ontario, London, Ontario, Canada
@article{CRMATH_2003__337_12_797_0,
     author = {Zengjing Chen and Reg Kulperger and Long Jiang},
     title = {Jensen's inequality for \protect\emph{g}-expectation, {Part} 2},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {797--800},
     publisher = {Elsevier},
     volume = {337},
     number = {12},
     year = {2003},
     doi = {10.1016/j.crma.2003.09.037},
     language = {en},
}
TY  - JOUR
AU  - Zengjing Chen
AU  - Reg Kulperger
AU  - Long Jiang
TI  - Jensen's inequality for g-expectation, Part 2
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 797
EP  - 800
VL  - 337
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2003.09.037
LA  - en
ID  - CRMATH_2003__337_12_797_0
ER  - 
%0 Journal Article
%A Zengjing Chen
%A Reg Kulperger
%A Long Jiang
%T Jensen's inequality for g-expectation, Part 2
%J Comptes Rendus. Mathématique
%D 2003
%P 797-800
%V 337
%N 12
%I Elsevier
%R 10.1016/j.crma.2003.09.037
%G en
%F CRMATH_2003__337_12_797_0
Zengjing Chen; Reg Kulperger; Long Jiang. Jensen's inequality for g-expectation, Part 2. Comptes Rendus. Mathématique, Volume 337 (2003) no. 12, pp. 797-800. doi : 10.1016/j.crma.2003.09.037. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.09.037/

[1] C. Aliprantis; K. Boder Infinite Dimensional Analysis, Springer-Verlag, Berlin, 1994

[2] P. Briand; F. Coquet; Y. Hu; J. Mémin; S. Peng A converse comparison theorem for BSDEs and related properties of g-expectation, Electron. Comm. Probab., Volume 5 (2000), pp. 101-117

[3] Z. Chen; R. Kulperger; L. Jiang Jensen's inequality for g-expectation, Part I, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 11 (in press)

[4] N. El Karoui; M.C. Quenez Dynamic programming and pricing of contingent claim in an incomplete market, SIAM J. Control Optim., Volume 33 (1995), pp. 29-66

[5] S. Peng Backward stochastic differential equations and related g-expectation (N. El Karoui; L. Mazliak, eds.), Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., 364, 1997, pp. 141-159

[6] D. Revuz; M. Yor Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999

  • Sel Ly; Nicolas Privault Stochastic ordering by g-expectations, Probability, Uncertainty and Quantitative Risk, Volume 6 (2021) no. 1, p. 61 | DOI:10.3934/puqr.2021004
  • Wenjie Song; Panyu Wu; Guodong Zhang Jensen’s inequality for g-expectations in general filtration spaces, Statistics Probability Letters, Volume 169 (2021), p. 108958 | DOI:10.1016/j.spl.2020.108958
  • Qian Lin Jensen inequality for superlinear expectations, Statistics Probability Letters, Volume 151 (2019), p. 79 | DOI:10.1016/j.spl.2019.03.006
  • Yuan Bao Kang The application of multi-dimensional Jensen’s inequality for G-martingale, Stochastic Analysis and Applications, Volume 37 (2019) no. 3, p. 499 | DOI:10.1080/07362994.2019.1585264
  • ZHAOJUN ZONG; FENG HU L p weak convergence method on BSDEs with non-uniformly Lipschitz coefficients and its applications, Proceedings - Mathematical Sciences, Volume 126 (2016) no. 3, p. 433 | DOI:10.1007/s12044-016-0276-5
  • Ze-Chun Hu; Zhen-Ling Wang Jensen’s inequality for backward SDEs driven by G-Brownian motion, Archiv der Mathematik, Volume 104 (2015) no. 5, p. 491 | DOI:10.1007/s00013-015-0756-3
  • Zhaojun Zong; Feng Hu; Chuancun Yin; Helin Wu On Jensen’s inequality, Hölder’s inequality, and Minkowski’s inequality for dynamically consistent nonlinear evaluations, Journal of Inequalities and Applications, Volume 2015 (2015) no. 1 | DOI:10.1186/s13660-015-0677-5
  • Hui Zhang Properties of solution of fractional backward stochastic differential equation, Applied Mathematics and Computation, Volume 228 (2014), p. 446 | DOI:10.1016/j.amc.2013.11.081
  • Zhaojun Zong Jensen's Inequality for Generalized Peng's -Expectations and Its Applications, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/683047
  • Feng Hu Dynamically consistent nonlinear evaluations with their generating functions in L p, Acta Mathematica Sinica, English Series, Volume 29 (2013) no. 4, p. 815 | DOI:10.1007/s10114-013-1715-1
  • Tao Hao g-variance, Acta Mathematica Sinica, English Series, Volume 26 (2010) no. 7, p. 1345 | DOI:10.1007/s10114-010-7582-0
  • Guangyan Jia On Jensen’s inequality and Hölder’s inequality for g-expectation, Archiv der Mathematik, Volume 94 (2010) no. 5, p. 489 | DOI:10.1007/s00013-010-0117-1
  • Feng Hu; Zengjing Chen Generalized Peng’s -expectations and related properties, Statistics Probability Letters, Volume 80 (2010) no. 3-4, p. 191 | DOI:10.1016/j.spl.2009.10.006
  • Sheng Jun Fan A note on Jensen’s inequality for BSDEs, Acta Mathematica Sinica, English Series, Volume 25 (2009) no. 10, p. 1681 | DOI:10.1007/s10114-009-7350-1
  • Long Jiang A necessary and sufficient condition for probability measures dominated by -expectation, Statistics Probability Letters, Volume 79 (2009) no. 2, p. 196 | DOI:10.1016/j.spl.2008.07.037
  • Wei Wang Maximal inequalities for -martingales, Statistics Probability Letters, Volume 79 (2009) no. 9, p. 1169 | DOI:10.1016/j.spl.2009.01.002
  • Sheng-Jun Fan Jensen's inequality for filtration consistent nonlinear expectation without domination condition, Journal of Mathematical Analysis and Applications, Volume 345 (2008) no. 2, p. 678 | DOI:10.1016/j.jmaa.2008.04.037
  • Long Jiang Jensen’s Inequality for Backward Stochastic Differential Equations*, Chinese Annals of Mathematics, Series B, Volume 27 (2006) no. 5, p. 553 | DOI:10.1007/s11401-005-0077-0
  • Long Jiang Representation theorems for generators of backward stochastic differential equations and their applications, Stochastic Processes and their Applications, Volume 115 (2005) no. 12, p. 1883 | DOI:10.1016/j.spa.2005.06.008
  • Long Jiang; Zeng-jing Chen A Result On the Probability Measures Dominated by g-Expectation, Acta Mathematicae Applicatae Sinica, English Series, Volume 20 (2004) no. 3, p. 507 | DOI:10.1007/s10255-004-0188-5

Cité par 20 documents. Sources : Crossref

Commentaires - Politique