Chen et al. (C. R. Acad. Sci. Paris, Ser. I 337 (11) (2003)) studied a Jensen's inequality for g-expectation under the assumption that g does not depend on (t,y). In this Note we consider some applications of this inequality.
Chen et al. (C. R. Acad. Sci. Paris, Ser. I 337 (11) (2003)) a étudié l'inégalité de Jensen pour la g-espérance sous la prétention que g n'est pas fonction de (t,y). Comme suite a cette étude, nous considérons les applications de l'inégalité de Jensen dans cet article.
Accepted:
Published online:
Zengjing Chen 1; Reg Kulperger 2; Long Jiang 1
@article{CRMATH_2003__337_12_797_0, author = {Zengjing Chen and Reg Kulperger and Long Jiang}, title = {Jensen's inequality for \protect\emph{g}-expectation, {Part} 2}, journal = {Comptes Rendus. Math\'ematique}, pages = {797--800}, publisher = {Elsevier}, volume = {337}, number = {12}, year = {2003}, doi = {10.1016/j.crma.2003.09.037}, language = {en}, }
Zengjing Chen; Reg Kulperger; Long Jiang. Jensen's inequality for g-expectation, Part 2. Comptes Rendus. Mathématique, Volume 337 (2003) no. 12, pp. 797-800. doi : 10.1016/j.crma.2003.09.037. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.09.037/
[1] Infinite Dimensional Analysis, Springer-Verlag, Berlin, 1994
[2] A converse comparison theorem for BSDEs and related properties of g-expectation, Electron. Comm. Probab., Volume 5 (2000), pp. 101-117
[3] Jensen's inequality for g-expectation, Part I, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 11 (in press)
[4] Dynamic programming and pricing of contingent claim in an incomplete market, SIAM J. Control Optim., Volume 33 (1995), pp. 29-66
[5] Backward stochastic differential equations and related g-expectation (N. El Karoui; L. Mazliak, eds.), Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., 364, 1997, pp. 141-159
[6] Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999
Cited by Sources:
Comments - Policy