We construct two d-dimensional independent diffusions , with the same viscosity ν≠0 and the same drift u(x,t)=(pρta(x)v1+(1−p)ρtb(x)v2)/(pρta(x)+(1−p)ρtb(x)), where ρta,ρtb are respectively the density of Xta and Xtb. Here and p∈(0,1) are given. We show that is the unique weak solution of the following pressureless gas system
Nous construisons deux diffusions indépendantes , ayant la même viscosité ν≠0 et la même dérive u(x,t)=(pρta(x)v1+(1−p)ρtb(x)v2)/(pρta(x)+(1−p)ρtb(x)), où sont respectivement les densités de Xta et Xtb. Ici , et p∈(0,1) sont donnés. Nous montrons que la famille est l'unique solution faible du système de gaz sans pression cité dans l'Abstract.
Accepted:
Published online:
Azzouz Dermoune 1; Siham Filali 1
@article{CRMATH_2003__337_11_731_0, author = {Azzouz Dermoune and Siham Filali}, title = {Diffusion with interactions between two types of particles and {Pressureless} gas equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {731--735}, publisher = {Elsevier}, volume = {337}, number = {11}, year = {2003}, doi = {10.1016/j.crma.2003.10.018}, language = {en}, }
TY - JOUR AU - Azzouz Dermoune AU - Siham Filali TI - Diffusion with interactions between two types of particles and Pressureless gas equations JO - Comptes Rendus. Mathématique PY - 2003 SP - 731 EP - 735 VL - 337 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2003.10.018 LA - en ID - CRMATH_2003__337_11_731_0 ER -
Azzouz Dermoune; Siham Filali. Diffusion with interactions between two types of particles and Pressureless gas equations. Comptes Rendus. Mathématique, Volume 337 (2003) no. 11, pp. 731-735. doi : 10.1016/j.crma.2003.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.018/
[1] Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., Volume 35 (1998), pp. 2317-2328
[2] Probability Theory, Springer, New York, 1978
[3] Propagation of chaos for pressureless gas equations, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 935-940
[4] Propagation and conditional propagation of chaos for pressureless gas equations, Probab. Theory Related Fields, Volume 126 (2003), pp. 459-476
[5] Pressureless gas equations with viscosity and nonlinear diffusion, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001), pp. 741-750
[6] Global solution of pressureless gas equation with viscosity, Physica D, Volume 163 (2002), pp. 184-190
[7] Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion dynamics, Comm. Math. Phys., Volume 177 (1996), pp. 349-380
[8] An existence theorem in the large for zero-pressure gas dynamics, Differential Integral Equations, Volume 14 (2001) no. 9, pp. 1077-1092
[9] Conditional propagation of chaos and a class of quasilinear PDE's, Ann. Probab., Volume 23 (1995) no. 3, pp. 1389-1413
Cited by Sources:
Comments - Policy