[Les groupes de Chow des surfaces telles que h2,0⩽1]
Nous considérons la géométrie des classes d'équivalence rationelle des points d'une surface S. Nous montrons que si S est une surface K3 générale, ces classes d'équivalence sont denses pour la topologie complexe. Nous montrons également que si S a la propriété que ces classes d'équivalence sont Zariski dense, alors h2,0(S)⩽1.
We will investigate the geometry of rational equivalence classes of points on a surface S. We will show that if S is a general projective K3 surface then these equivalence classes are dense in the complex topology. We will also show that if S has the property that these equivalence classes are Zariski dense, then h2,0(S)⩽1.
Accepté le :
Publié le :
Catriona Maclean 1
@article{CRMATH_2004__338_1_55_0, author = {Catriona Maclean}, title = {Chow groups of surfaces with \protect\emph{h}\protect\textsuperscript{2,0}\ensuremath{\leqslant}1}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--58}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2003.10.039}, language = {en}, }
Catriona Maclean. Chow groups of surfaces with h2,0⩽1. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 55-58. doi : 10.1016/j.crma.2003.10.039. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.039/
[1] K2 of Artinian Q-algebras, with application to algebraic cycles, Comm. Algebra, Volume 3 (1975), pp. 405-428
[2] Zero cycles on surfaces with pg=0, Compositio Math., Volume 33 (1976) no. 2, pp. 135-145
[3] Rational curves on K3 surfaces, J. Algebraic Geometry, Volume 8 (1999) no. 2, pp. 245-278
[4] Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, CA, 1979), Springer, New York, 1980, pp. 41-74
[5] The uniruledness of the moduli space of curves of genus 11, Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 334-353
[6] Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1968), pp. 195-204
[7] The torsion of the group of 0-cycles modulo rational equivalence, Ann. of Math. (2), Volume 111 (1980) no. 3, pp. 553-569
[8] Projective models of K3 surfaces, Amer. J. Math., Volume 96 (1974), pp. 602-639
[9] Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 19 (1992) no. 4, pp. 473-492
Cité par Sources :
Commentaires - Politique