Comptes Rendus
Algebraic Geometry
Chow groups of surfaces with h2,0⩽1
[Les groupes de Chow des surfaces telles que h2,0⩽1]
Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 55-58.

Nous considérons la géométrie des classes d'équivalence rationelle des points d'une surface S. Nous montrons que si S est une surface K3 générale, ces classes d'équivalence sont denses pour la topologie complexe. Nous montrons également que si S a la propriété que ces classes d'équivalence sont Zariski dense, alors h2,0(S)⩽1.

We will investigate the geometry of rational equivalence classes of points on a surface S. We will show that if S is a general projective K3 surface then these equivalence classes are dense in the complex topology. We will also show that if S has the property that these equivalence classes are Zariski dense, then h2,0(S)⩽1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.10.039

Catriona Maclean 1

1 Institut de mathématiques de Jussieu, Université Paris 6, 175, rue de Chevaleret, 75013 Paris, France
@article{CRMATH_2004__338_1_55_0,
     author = {Catriona Maclean},
     title = {Chow groups of surfaces with \protect\emph{h}\protect\textsuperscript{2,0}\ensuremath{\leqslant}1},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {55--58},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2003.10.039},
     language = {en},
}
TY  - JOUR
AU  - Catriona Maclean
TI  - Chow groups of surfaces with h2,0⩽1
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 55
EP  - 58
VL  - 338
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2003.10.039
LA  - en
ID  - CRMATH_2004__338_1_55_0
ER  - 
%0 Journal Article
%A Catriona Maclean
%T Chow groups of surfaces with h2,0⩽1
%J Comptes Rendus. Mathématique
%D 2004
%P 55-58
%V 338
%N 1
%I Elsevier
%R 10.1016/j.crma.2003.10.039
%G en
%F CRMATH_2004__338_1_55_0
Catriona Maclean. Chow groups of surfaces with h2,0⩽1. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 55-58. doi : 10.1016/j.crma.2003.10.039. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.10.039/

[1] S. Bloch K2 of Artinian Q-algebras, with application to algebraic cycles, Comm. Algebra, Volume 3 (1975), pp. 405-428

[2] S. Bloch; A. Kas; D. Lieberman Zero cycles on surfaces with pg=0, Compositio Math., Volume 33 (1976) no. 2, pp. 135-145

[3] X. Chen Rational curves on K3 surfaces, J. Algebraic Geometry, Volume 8 (1999) no. 2, pp. 245-278

[4] P. Griffiths; M. Green Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, CA, 1979), Springer, New York, 1980, pp. 41-74

[5] S. Mori; S. Mukai The uniruledness of the moduli space of curves of genus 11, Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 334-353

[6] D. Mumford Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1968), pp. 195-204

[7] A. Roitman The torsion of the group of 0-cycles modulo rational equivalence, Ann. of Math. (2), Volume 111 (1980) no. 3, pp. 553-569

[8] B. Saint-Donat Projective models of K3 surfaces, Amer. J. Math., Volume 96 (1974), pp. 602-639

[9] C. Voisin Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 19 (1992) no. 4, pp. 473-492

Cité par Sources :

Commentaires - Politique