[Globale existence for a class of semilinear perturbed wave equations]
In this paper we prove a global well-posedness result for the following Cauchy problem:
Dans cet article nous prouvons que le problème de Cauchy suivant est bien posé :
Accepted:
Published online:
Nicola Visciglia 1
@article{CRMATH_2004__338_1_27_0, author = {Nicola Visciglia}, title = {Existence globale pour une classe d'\'equations d'ondes perturb\'ees}, journal = {Comptes Rendus. Math\'ematique}, pages = {27--30}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2003.11.007}, language = {fr}, }
Nicola Visciglia. Existence globale pour une classe d'équations d'ondes perturbées. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 27-30. doi : 10.1016/j.crma.2003.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.007/
[1] V. Georgiev, N. Visciglia, Decay estimates for the wave equation with potential, Comm. Partial Differential Equation, in press
[2] The global Cauchy problem for the nonlinear Klein–Gordon equation, Math. Z., Volume 189 (1985), pp. 487-505
[3] The global Cauchy problem for the nonlinear Klein–Gordon equation. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 6 (1989), pp. 15-35
[4] Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math., Volume 132 (1990), pp. 485-509
[5] Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z., Volume 77 (1961), pp. 295-308
[6] The Cauchy problem for the semilinear wave equation I, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 163 (Kraev. Zadachi Mat. Fiz. i Smezhn. Vopr. Teor. Funktsii 19), Volume 188 (1987), pp. 76-104
[7] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980
[8] Non-linear semi-groups, Ann. of Math., Volume 78 (1963), pp. 339-364
[9] Globally regular solutions to the u5 Klein–Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 15 (1989) no. 4, pp. 495-513
Cited by Sources:
Comments - Policy