[Weighted Bickel–Rosenblatt process and goodness of fit tests]
Le but de cette étude est de trouver la loi limite du processus
The goal of this work is to establish the limit distribution of the process
Accepted:
Published online:
Fateh Chebana 1
@article{CRMATH_2004__338_4_311_0,
author = {Fateh Chebana},
title = {Processus de {Bickel{\textendash}Rosenblatt} pond\'er\'e et tests d'ajustement},
journal = {Comptes Rendus. Math\'ematique},
pages = {311--316},
year = {2004},
publisher = {Elsevier},
volume = {338},
number = {4},
doi = {10.1016/j.crma.2003.11.031},
language = {fr},
}
Fateh Chebana. Processus de Bickel–Rosenblatt pondéré et tests d'ajustement. Comptes Rendus. Mathématique, Volume 338 (2004) no. 4, pp. 311-316. doi: 10.1016/j.crma.2003.11.031
[1] On some global measures of the deviations of density function estimates, Ann. Statist., Volume 1 (1973), pp. 1071-1095
[2] Testing the goodness of fit of a parametric density function by kernel method, Econometric Theory, Volume 10 (1994), pp. 316-356
[3] The L1-norm density estimator process, Ann. Probab., Volume 3 (2003), pp. 719-768
[4] The power and optimal kernel of the Bickel–Rosenblatt test for goodness of fit, Ann. Statist., Volume 19 (1991), pp. 999-1009
[5] Central limit theorem for integrated square error of multivariate nonparametric density estimators, J. Multivariate Anal., Volume 14 (1984), pp. 1-16
[6] Nonparametric Estimate of Probability Densities and Regression Curves, Kluwer Academic, 1989
[7] Convergence of Stochastic Processes, Springer, New York, 1984
[8] Loi asymptotique des erreurs quadratiques intégrées des estimateurs à noyau de la densité et de la régression sous des conditions de dépendence, Portugal. Math., Volume 54 (1997), pp. 187-213
[9] Asymptotic in Statistics, Cambridge University Press, New York, 1998
[10] Weak Convergence and Empirical Processes, Springer-Verlag, Berlin, 1996
Cited by Sources:
Comments - Policy
