Following the idea of an invariant differential complex, we construct general-type cyclic modules that provide the common denominator of known cyclic theories. The cyclicity of these modules is governed by Hopf-algebraic structures. We prove that the existence of a cyclic operator forces a modification of the Yetter–Drinfeld compatibility condition leading to the concept of a stable anti-Yetter–Drinfeld module. This module plays the role of the space of coefficients in the thus obtained cyclic cohomology of module algebras and coalgebras, and the cyclic homology and cohomology of comodule algebras. Along the lines of Connes and Moscovici, we show that there is a pairing between the cyclic cohomology of a module coalgebra acting on a module algebra and closed 0-cocycles on the latter. The pairing takes values in the usual cyclic cohomology of the algebra. Similarly, we argue that there is an analogous pairing between closed 0-cocycles of a module coalgebra and the cyclic cohomology of a module algebra.
Suivant l'idée d'un complexe différentiel invariant, nous construisons des modules cycliques de type général qui fournissent un dénominateur commun aux théories cycliques connues. Le caractère cyclique de ces modules est gouverné par des structures Hopf-algébriques. Nous montrons que l'existence d'un opérateur cyclique oblige à une modification de la condition de compatibilité de Yetter–Drinfeld et mène au concept de module anti-Yetter–Drinfeld stable. Ce module joue le rôle d'espace de coefficients pour la cohomologie de modules algèbres et de modules cogèbres ainsi obtenue, ainsi que pour l'homologie et la cohomologie cycliques de comodules algèbres. Comme l'ont fait Connes et Moscovici pour leur cohomologie, nous montrons qu'il existe un appariement entre la cohomologie cyclique d'un module cogèbre agissant sur un module algèbre et les 0-cycles fermés sur ce dernier. Cet appariement prend ses valeurs dans la cohomologie cyclique usuelle de l'algèbre. De façon similaire, nous établissons un appariement analogue entre les 0-cycles fermés d'un module cogèbre et la cohomologie cyclique d'un module algèbre.
Accepted:
Published online:
Piotr M. Hajac 1, 2; Masoud Khalkhali 3; Bahram Rangipour 3; Yorck Sommerhäuser 4
@article{CRMATH_2004__338_9_667_0, author = {Piotr M. Hajac and Masoud Khalkhali and Bahram Rangipour and Yorck Sommerh\"auser}, title = {Hopf-cyclic homology and cohomology with coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {667--672}, publisher = {Elsevier}, volume = {338}, number = {9}, year = {2004}, doi = {10.1016/j.crma.2003.11.036}, language = {en}, }
TY - JOUR AU - Piotr M. Hajac AU - Masoud Khalkhali AU - Bahram Rangipour AU - Yorck Sommerhäuser TI - Hopf-cyclic homology and cohomology with coefficients JO - Comptes Rendus. Mathématique PY - 2004 SP - 667 EP - 672 VL - 338 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2003.11.036 LA - en ID - CRMATH_2004__338_9_667_0 ER -
Piotr M. Hajac; Masoud Khalkhali; Bahram Rangipour; Yorck Sommerhäuser. Hopf-cyclic homology and cohomology with coefficients. Comptes Rendus. Mathématique, Volume 338 (2004) no. 9, pp. 667-672. doi : 10.1016/j.crma.2003.11.036. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.036/
[1] Hopf algebra equivariant cyclic homology and cyclic homology of crossed product algebras, J. Reine Angew. Math., Volume 559 (2003), pp. 137-152
[2] Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., Volume 63 (1948), pp. 85-124
[3] Noncommutative differential geometry, Inst. Hautes Ètudes Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[4] Hopf algebras, cyclic cohomology and the transverse index theorem, Commun. Math. Phys., Volume 198 (1998), pp. 199-246
[5] Cyclic cohomology and Hopf algebras, Lett. Math. Phys., Volume 48 (1999), pp. 97-108
[6] Stable anti-Yetter–Drinfeld modules, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004)
[7] Invariant cyclic homology, K-Theory, Volume 28 (2003), pp. 183-205
[8] A new cyclic module for Hopf algebras, K-Theory, Volume 27 (2002), pp. 111-131
[9] Differential calculi over quantum groups and twisted cyclic cocycles, J. Geom. Phys., Volume 44 (2003), pp. 570-594
[10] Cyclic Homology, Springer-Verlag, Berlin, 1998
Cited by Sources:
Comments - Policy