[Une extension du théorème du point fixe de Brouwer autorisant des discontinuités]
In this article, we extend Brouwer's fixed point theorem – which states that every continuous mapping
Nous étendons dans cet article le théorème du point fixe de Brouwer – qui dit que toute fonction f continue de B dans B (une boule fermée de
Accepté le :
Publié le :
Philippe Bich 1
@article{CRMATH_2004__338_9_673_0, author = {Philippe Bich}, title = {An extension of {Brouwer's} fixed point theorem allowing discontinuities}, journal = {Comptes Rendus. Math\'ematique}, pages = {673--678}, publisher = {Elsevier}, volume = {338}, number = {9}, year = {2004}, doi = {10.1016/j.crma.2004.03.001}, language = {en}, }
Philippe Bich. An extension of Brouwer's fixed point theorem allowing discontinuities. Comptes Rendus. Mathématique, Volume 338 (2004) no. 9, pp. 673-678. doi : 10.1016/j.crma.2004.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.03.001/
[1] P. Bich, Some fixed point theorems allowing discontinuities, in press
[2]
[3] Theory of Value, Wiley, New York, 1959
[4] Equilibrium in incomplete markets, I. A basic model of generic existence, J. Math. Econom., Volume 14 (1985) no. 3, pp. 285-300
[5] Differentiel Topology, Graduate Texts in Math., vol. 33, Springer-Verlag, New York, 1994
[6] A geometric approach to a class of equilibrium existence theorems, J. Math. Econom., Volume 19 (1990) no. 1–2, pp. 95-106
[7] Incomplete markets (W. Hildenbrand; H. Sonnenschein, eds.), Handbook of Mathematical Economics, vol. 4, 1991, pp. 167-194
[8] Characteristic Classes, Ann. Math. Stud., vol. 76, Princeton University Press, NJ, 1974
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier