Partant d'un quadrilatère q0=(A1,A2,A3,A4) de , on construit une suite qn=(A4n+1,…,A4n+4) de quadrilatères par itération de pliages : qn=ϕ4∘ϕ3∘ϕ2∘ϕ1(qn−1), où le pliage ϕj remplace le sommet numéro j par son symétrique par rapport à la diagonale opposée. Dans cette Note, nous étudions le comportement dynamique de la suite qn.
Starting with a quadrilateral q0=(A1,A2,A3,A4) of , one constructs a sequence of quadrilaterals qn=(A4n+1,…,A4n+4) by iteration of foldings: qn=ϕ4∘ϕ3∘ϕ2∘ϕ1(qn−1) where the folding ϕj replaces the vertex number j by its symmetric with respect to the opposite diagonal.
We study the dynamical behavior of this sequence. In particular, we prove that:
– The drift exists.
– When none of the qn is isometric to q0, then the drift v is zero if and only if one has , where a1,…,a4 are the sidelengths of q0.
– For Lebesgue almost all q0 the sequence (qn−nv)n⩾1 is dense on a bounded analytic curve with a center, or an axis of symmetry. However, for Baire generic q0, the sequence (qn−nv)n⩾1 is unbounded.
Accepté le :
Publié le :
Yves Benoist 1 ; Dominique Hulin 2
@article{CRMATH_2004__338_3_235_0, author = {Yves Benoist and Dominique Hulin}, title = {It\'eration de pliages de quadrilat\`eres}, journal = {Comptes Rendus. Math\'ematique}, pages = {235--238}, publisher = {Elsevier}, volume = {338}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2003.12.011}, language = {fr}, }
Yves Benoist; Dominique Hulin. Itération de pliages de quadrilatères. Comptes Rendus. Mathématique, Volume 338 (2004) no. 3, pp. 235-238. doi : 10.1016/j.crma.2003.12.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.12.011/
[1] Y. Benoist, D. Hulin, Itération de pliages de quadrilatères, Preprint, 2003
[2] Poncelet's closure theorem, Exposition. Math., Volume 5 (1987), pp. 289-364
[3] The dynamics of quadrilateral folding, Experiment. Math., Volume 2 (1993), pp. 209-222
[4] Dynamics on elliptic curves arising from polygonal folding, Discrete Comput. Geom., Volume 25 (2001), pp. 477-502
[5] On Cayley's explicit solution to Poncelet porism, Enseign. Math., Volume 24 (1978), pp. 31-40
Cité par Sources :
Commentaires - Politique