If the Riemann curvature tensor associated with a smooth field of positive-definite symmetric matrices of order n vanishes in a simply-connected open subset , then is the metric tensor field of a manifold isometrically immersed in .
In this Note, we first show how, under a mild smoothness assumption on the boundary of , this classical result can be extended “up to the boundary”. When is bounded, we also establish the continuity of the manifold with boundary obtained in this fashion as a function of its metric tensor field, the topologies being those of the Banach spaces .
Si le tenseur de courbure de Riemann associé à un champ régulier de matrices symétriques définies positives d'ordre n s'annule sur un ouvert simplement connexe, alors est le champ de tenseurs métriques d'une variété plongée isométriquement dans .
Dans cette Note, on montre d'abord, moyennant une hypothèse peu restrictive sur la régularité de la frontière de , comment ce résultat classique peut être étendu “jusqu'à la frontière”. Lorsque est borné, on établit aussi la continuité de la variété à bord ainsi obtenue en fonction de son champ de tenseurs métriques, les topologies étant celles des espaces de Banach .
Accepted:
Published online:
Philippe G. Ciarlet 1; Cristinel Mardare 2
@article{CRMATH_2004__338_4_333_0, author = {Philippe G. Ciarlet and Cristinel Mardare}, title = {On the recovery of a manifold with boundary in $ \mathbb{R}^{n}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {333--340}, publisher = {Elsevier}, volume = {338}, number = {4}, year = {2004}, doi = {10.1016/j.crma.2003.12.018}, language = {en}, }
Philippe G. Ciarlet; Cristinel Mardare. On the recovery of a manifold with boundary in $ \mathbb{R}^{n}$. Comptes Rendus. Mathématique, Volume 338 (2004) no. 4, pp. 333-340. doi : 10.1016/j.crma.2003.12.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.12.018/
[1] Ordinary differential equations of nonlinear elasticity I: Foundations of the theories of non-linearly elastic rods and shells, Arch. Rational Mech. Anal., Volume 61 (1976), pp. 307-351
[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1977), pp. 337-403
[3] Continuity of a surface as a function of its two fundamental forms, J. Math. Pures Appl., Volume 82 (2002), pp. 253-274
[4] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185
[5] Continuity of a deformation as a function of its Cauchy–Green tensor, Arch. Rational Mech. Anal., Volume 167 (2003), pp. 255-269
[6] P.G. Ciarlet, C. Mardare, Extension of a Riemannian metric with vanishing curvature, C. R. Acad. Sci. Paris, Ser. I, in press
[7] P.G. Ciarlet, C. Mardare, Recovery of a manifold with boundary and its continuity as a function of its metric tensor, in press
[8] P.G. Ciarlet, C. Mardare, Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, in press
[9] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[10] Rotation and strain, Comm. Pure Appl. Math., Volume 14 (1961), pp. 391-413
[11] Bounds for deformations in terms of average strains (O. Shisha, ed.), Inequalities, III, Academic Press, New York, 1972, pp. 129-144
[12] New integral estimates for deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal., Volume 78 (1982), pp. 131-172
[13] Mappings of domains in and their metric tensors, Siberian Math. J., Volume 44 (2003), pp. 332-345
Cited by Sources:
Comments - Policy