A one-step scheme is constructed, which, as the Milstein scheme, has the strong approximation property of order 1; in contrast to the Milstein scheme, our scheme does not involve the simulation of iterated Itô integrals of second order.
On propose un schéma à un pas, qui, comme le schéma de Milstein, possède la propriété d'approximation forte à l'ordre 1 ; contrairement au schéma de Milstein, notre schéma ne nécessite pas la simulation d'intégrales itérées de Itô du second degré.
Accepted:
Published online:
Ana Bela Cruzeiro 1; Paul Malliavin 2; Anton Thalmaier 3
@article{CRMATH_2004__338_6_481_0, author = {Ana Bela Cruzeiro and Paul Malliavin and Anton Thalmaier}, title = {Geometrization of {Monte-Carlo} numerical analysis of an elliptic operator: strong approximation}, journal = {Comptes Rendus. Math\'ematique}, pages = {481--486}, publisher = {Elsevier}, volume = {338}, number = {6}, year = {2004}, doi = {10.1016/j.crma.2004.01.007}, language = {en}, }
TY - JOUR AU - Ana Bela Cruzeiro AU - Paul Malliavin AU - Anton Thalmaier TI - Geometrization of Monte-Carlo numerical analysis of an elliptic operator: strong approximation JO - Comptes Rendus. Mathématique PY - 2004 SP - 481 EP - 486 VL - 338 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2004.01.007 LA - en ID - CRMATH_2004__338_6_481_0 ER -
%0 Journal Article %A Ana Bela Cruzeiro %A Paul Malliavin %A Anton Thalmaier %T Geometrization of Monte-Carlo numerical analysis of an elliptic operator: strong approximation %J Comptes Rendus. Mathématique %D 2004 %P 481-486 %V 338 %N 6 %I Elsevier %R 10.1016/j.crma.2004.01.007 %G en %F CRMATH_2004__338_6_481_0
Ana Bela Cruzeiro; Paul Malliavin; Anton Thalmaier. Geometrization of Monte-Carlo numerical analysis of an elliptic operator: strong approximation. Comptes Rendus. Mathématique, Volume 338 (2004) no. 6, pp. 481-486. doi : 10.1016/j.crma.2004.01.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.01.007/
[1] Renormalized differential geometry on path space: structural equation, curvature, J. Funct. Anal., Volume 139 (1996), pp. 119-181
[2] Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992
[3] Paramétrix trajectorielle pour un opérateur hypoelliptique et repère mobile stochastique, C. R. Acad. Sci. Paris, Sér. A-B, Volume 281 (1975), p. A241-A244
[4] Numerical error for SDE: asymptotic expansion and hyperdistributions, C.R. Math. Acad. Sci. Paris, Sér. I, Volume 336 (2003), pp. 851-856
[5] Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., Volume 13 (2003), pp. 540-560
[6] Numerical Integration of Stochastic Differential Equations, Math. Appl., vol. 313, Kluwer Academic, Dordrecht, 1995 (Translated and revised from the 1988 Russian original)
[7] Multidimensional Diffusion Processes, Grundlehren Math. Wiss., vol. 233, Springer-Verlag, Berlin, 1979
[8] Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, Americal Mathematical Society, Providence, RI, 2003
Cited by Sources:
Comments - Policy