Comptes Rendus
Numerical Analysis
Denoising using nonlinear multiscale representations
Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 647-652.

The goal of this paper is to present some numerical results for the one-dimensional denoising problem by using the nonlinear multiscale representations. We introduce modified thresholding strategies in this new context which give significant significant improvements for one-dimensional denoising problems.

Le but de cet article est de présenter quelques résultats numériques pour le problème de débruitage monodimensionnel en utilisant les représentations multiéchelles non-linéaires. On propose des strategies modifiées de seuillage qui améliorent d'une manière significative les résultats existants pour le problème 1D de débruitage.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.02.004

Basarab Matei 1

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2004__338_8_647_0,
     author = {Basarab Matei},
     title = {Denoising using nonlinear multiscale representations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {647--652},
     publisher = {Elsevier},
     volume = {338},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crma.2004.02.004},
     language = {en},
}
TY  - JOUR
AU  - Basarab Matei
TI  - Denoising using nonlinear multiscale representations
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 647
EP  - 652
VL  - 338
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2004.02.004
LA  - en
ID  - CRMATH_2004__338_8_647_0
ER  - 
%0 Journal Article
%A Basarab Matei
%T Denoising using nonlinear multiscale representations
%J Comptes Rendus. Mathématique
%D 2004
%P 647-652
%V 338
%N 8
%I Elsevier
%R 10.1016/j.crma.2004.02.004
%G en
%F CRMATH_2004__338_8_647_0
Basarab Matei. Denoising using nonlinear multiscale representations. Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 647-652. doi : 10.1016/j.crma.2004.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.02.004/

[1] F. Arandiga, R. Donat, A class of nonlinear multiscale decomposition, Preprint, University of Valencia, 1999. Numer. Algorithms, in press

[2] A. Cohen Wavelets in Numerical Analysis (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. VII, Elsevier, Amsterdam, 1999

[3] A. Cohen; R. Ryan Wavelets and Multiscale Signal Processing, Chapman & Hall, London, 1995

[4] A. Cohen; N. Dyn; B. Matei On the smoothness and stability of quasilinear subdivision schemes with application to ENO interpolation, Appl. Comp. Harm. Anal., Volume 15 (2003), pp. 89-116

[5] A. Cohen; B. Matei Nonlinear subdivisions schemes: applications to image processing (A. Iske; E. Quack; M. Floater, eds.), Tutorial on Multiresolution in Geometric Modelling, Springer, 2002

[6] R.R. Coifman, D. Donoho, Translation Invariant Denosing, Preprint, 1995

[7] D. Donoho; I. Johnstone; G. Kerkyacharian; D. Picard Wavelet shrinkage: Asymptotia?, J. Roy. Statist. Soc. Ser. B, Volume 57 (1994), pp. 301-369 (with discussion)

[8] A. Harten Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math., Volume 12 (1993), pp. 153-193

[9] A. Harten ENO schemes with subcell resolution, J. Comput. Phys., Volume 23 (1995), pp. 53-71

[10] A. Harten; B. Enquist; S. Osher; S. Chakravarthy Uniformly high order accurate essentially non-oscillatory schemes III, J. Comput. Phys., Volume 71 (1987), pp. 231-303

[11] B. Matei, Méthodes multi-échelles non-linéaires – Applications au traitemnt d'image, Ph.D. Thesis, Université Pierre et Marie Curie (Paris VI), 2002

Cited by Sources:

Comments - Policy