[Solutions se concentrant sur des courbes pour certains problèmes elliptiques singulières]
We study positive solutions of the equation −ε2Δu+u=up, where p>1 and ε>0 is small, with Neumann boundary conditions in a three-dimensional domain
On étudie les solutions positives de l'équation −ε2Δu+u=up, où p>1 et ε>0 est petit, avec conditions de Neumann sur le bord sur un domaine
Accepté le :
Publié le :
Andrea Malchiodi 1
@article{CRMATH_2004__338_10_775_0, author = {Andrea Malchiodi}, title = {Solutions concentrating at curves for some singularly perturbed elliptic problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {775--780}, publisher = {Elsevier}, volume = {338}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.03.023}, language = {en}, }
Andrea Malchiodi. Solutions concentrating at curves for some singularly perturbed elliptic problems. Comptes Rendus. Mathématique, Volume 338 (2004) no. 10, pp. 775-780. doi : 10.1016/j.crma.2004.03.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.03.023/
[1] Commun. Math. Phys., 235 (2003), pp. 427-466
[2] A. Ambrosetti, A. Malchiodi, W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J., in press
[3] S. Cingolani, A. Pistoia, Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys., in press
[4] E.N. Dancer, Stable and finite Morse index solutions on
[5] Differential Integral Equations, 16 (2003) no. 3, pp. 349-384
[6] J. Funct. Anal., 149 (1997), pp. 245-265
[7] Canad. J. Math., 52 (2000) no. 3, pp. 522-538
[8] Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., vol. 132, Springer-Verlag, Berlin, 1976
[9] Comm. Pure Appl. Math., 51 (1998), pp. 1445-1490
[10] J. Differential Equations, 72 (1988), pp. 1-27
[11] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Preprint
[12] Comm. Pure Appl. Math., 15 (2002), pp. 1507-1568
[13] A. Malchiodi, M. Montenegro, Multidimensional boundary-layers for a singularly perturbed Neumann problem, Duke Univ. Math. J., in press
[14] A. Malchiodi, W.-M. Ni, J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Preprint
[15] R. Mazzeo, F. Pacard, Foliations by constant mean curvature tubes, Preprint
[16] Notices Amer. Math. Soc., 45 (1998) no. 1, pp. 9-18
[17] Comm. Pure Appl. Math., 41 (1991), pp. 819-851
[18] Duke Math. J., 70 (1993), pp. 247-281
[19] Trans. Amer. Math. Soc., 354 (2002) no. 8, pp. 3117-3154
- Concentration on points for a nonlinear Schrödinger problem with Dirichlet boundary condition, Discrete and Continuous Dynamical Systems, Volume 45 (2025) no. 8, pp. 2735-2788 | DOI:10.3934/dcds.2025003 | Zbl:8020025
- On Ambrosetti-Malchiodi-Ni conjecture on two-dimensional smooth bounded domains: clustering concentration layers, Journal of Functional Analysis, Volume 281 (2021) no. 10, p. 102 (Id/No 109220) | DOI:10.1016/j.jfa.2021.109220 | Zbl:1473.35027
- Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 197 (2020), p. 28 (Id/No 111841) | DOI:10.1016/j.na.2020.111841 | Zbl:1440.35056
- Concentration on curves for a Neumann Ambrosetti-Prodi-type problem in two-dimensional domains, Annales Henri Poincaré, Volume 19 (2018) no. 12, pp. 3581-3633 | DOI:10.1007/s00023-018-0710-6 | Zbl:1408.35051
- On Ambrosetti-Malchiodi-Ni Conjecture on two-dimensional smooth bounded domains, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 3, pp. 1-45 (Id/No 87) | DOI:10.1007/s00526-018-1347-5 | Zbl:1398.35041
- Multiple positive solutions for a class of
-Laplacian Neumann problems without growth conditions, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 24 (2018) no. 4, pp. 1625-1644 | DOI:10.1051/cocv/2017074 | Zbl:1419.35072 - Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic field, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 4, p. 33 (Id/No 82) | DOI:10.1007/s00526-016-1013-8 | Zbl:1362.35280
- Layered solutions with concentration on lines in three-dimensional domains, Analysis and Applications (Singapore), Volume 12 (2014) no. 2, pp. 161-194 | DOI:10.1142/s0219530513500334 | Zbl:1288.35250
- Concentration on surfaces for a singularly perturbed Neumann problem in three-dimensional domains, Journal of Differential Equations, Volume 255 (2013) no. 8, pp. 2220-2266 | DOI:10.1016/j.jde.2013.06.011 | Zbl:1285.35011
- An optimal bound on the number of interior spike solutions for the Lin-Ni-Takagi problem, Journal of Functional Analysis, Volume 265 (2013) no. 7, pp. 1324-1356 | DOI:10.1016/j.jfa.2013.06.016 | Zbl:1286.35020
- Triple Junction Solutions for a Singularly Perturbed Neumann Problem, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 6, p. 2519 | DOI:10.1137/100812100
- Transition layer for the heterogeneous Allen-Cahn equation, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 25 (2008) no. 3, pp. 609-631 | DOI:10.1016/j.anihpc.2007.03.008 | Zbl:1148.35030
- Concentration on curves for nonlinear Schrödinger equations, Communications on Pure and Applied Mathematics, Volume 60 (2007) no. 1, pp. 113-146 | DOI:10.1002/cpa.20135 | Zbl:1123.35003
- On the number of interior peak solutions for a singularly perturbed Neumann problem, Communications on Pure and Applied Mathematics, Volume 60 (2007) no. 2, pp. 252-281 | DOI:10.1002/cpa.20139 | Zbl:1170.35424
- Concentration phenomena of solutions for some singularly perturbed elliptic equations, Journal of Mathematical Analysis and Applications, Volume 331 (2007) no. 2, pp. 927-946 | DOI:10.1016/j.jmaa.2006.09.029 | Zbl:1131.35022
- Singularly Perturbed Neumann Problems, Perturbation Methods and Semilinear Elliptic Problems on Rn, Volume 240 (2006), p. 135 | DOI:10.1007/3-7643-7396-2_9
- Concentration at Spheres for Radial Problems, Perturbation Methods and Semilinear Elliptic Problems on Rn, Volume 240 (2006), p. 151 | DOI:10.1007/3-7643-7396-2_10
- Nonlinear Schrödinger equations: concentration on weighted geodesics in the semi-classical limit, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 341 (2005) no. 4, pp. 223-228 | DOI:10.1016/j.crma.2005.06.026 | Zbl:1076.35041
Cité par 18 documents. Sources : Crossref, zbMATH
Commentaires - Politique