[Equations de Schrödinger non linéaires : Concentration sur des géodésiques pondérées dans la limite semi-classique]
On considère le problème
We consider the problem
Accepté le :
Publié le :
Manuel del Pino 1 ; Michał Kowalczyk 1, 2 ; Juncheng Wei 3
@article{CRMATH_2005__341_4_223_0, author = {Manuel del Pino and Micha{\l} Kowalczyk and Juncheng Wei}, title = {Nonlinear {Schr\"odinger} equations: concentration on weighted geodesics in the semi-classical limit}, journal = {Comptes Rendus. Math\'ematique}, pages = {223--228}, publisher = {Elsevier}, volume = {341}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2005.06.026}, language = {en}, }
TY - JOUR AU - Manuel del Pino AU - Michał Kowalczyk AU - Juncheng Wei TI - Nonlinear Schrödinger equations: concentration on weighted geodesics in the semi-classical limit JO - Comptes Rendus. Mathématique PY - 2005 SP - 223 EP - 228 VL - 341 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2005.06.026 LA - en ID - CRMATH_2005__341_4_223_0 ER -
%0 Journal Article %A Manuel del Pino %A Michał Kowalczyk %A Juncheng Wei %T Nonlinear Schrödinger equations: concentration on weighted geodesics in the semi-classical limit %J Comptes Rendus. Mathématique %D 2005 %P 223-228 %V 341 %N 4 %I Elsevier %R 10.1016/j.crma.2005.06.026 %G en %F CRMATH_2005__341_4_223_0
Manuel del Pino; Michał Kowalczyk; Juncheng Wei. Nonlinear Schrödinger equations: concentration on weighted geodesics in the semi-classical limit. Comptes Rendus. Mathématique, Volume 341 (2005) no. 4, pp. 223-228. doi : 10.1016/j.crma.2005.06.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.026/
[1] Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., Volume 140 (1997), pp. 285-300
[2] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Comm. Math. Phys., Volume 235 (2003), pp. 427-466
[3] Concentration around a sphere for a singularly perturbed Schrödinger equation, Nonlinear Anal., Volume 49 (2002), pp. 947-985
[4] The semiclassical limit of the nonlinear Schrödinger equation in a radial potential, J. Differential Equations, Volume 184 (2002), pp. 109-138
[5] Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., Volume 65 (2002), pp. 295-316
[6] Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., Volume 149 (1997), pp. 245-265
[7] Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., Volume 324 (2002) no. 1, pp. 1-32
[8] M. del Pino, M. Kowalczyk, J. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., in press
[9] Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., Volume 69 (1986), pp. 397-408
[10] On the number of single-peak solutions of the nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Lineaire, Volume 19 (2002), pp. 261-280
[11] Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, Volume 21 (2004) no. 3, pp. 287-318
[12] On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, Volume 5 (2000) no. 7–9, pp. 899-928
[13] Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), vol. 59, Kluwer Academic, Dordrecht, 1991
[14] Boundary concentration phenomena for a singularly perturbed elliptic problem, Commun. Pure Appl. Math., Volume 55 (2002), pp. 1507-1568
[15] Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., Volume 124 (2004) no. 1, pp. 105-143
[16] Solutions concentrating at curves for some singularly perturbed elliptic problems, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 10, pp. 775-780
[17] On positive multibump states of nonlinear Schrödinger equation under multiple well potentials, Commun. Math. Phys., Volume 131 (1990), pp. 223-253
[18] On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., Volume 153 (1993), pp. 229-243
Cité par Sources :
Commentaires - Politique