We characterize the rational surfaces X which have a finite number of (−1)-curves under the assumption that −KX is nef, where KX is a canonical divisor on X, and has self-intersection zero. We prove also that if −KX is not nef and has self-intersection zero, then X has a finite number of (−1)-curves.
Nous caractérisons les surfaces rationnelles X qui ont un nombre fini de (−1)-courbes sous les conditions que −KX soit nef, KX étant un diviseur canonique sur X, et que KX2 soit égal à zero. Nous prouvons aussi que si −KX n'est pas nef et de carré nul, alors X a un nombre fini de (−1)-courbes.
Accepted:
Published online:
Mustapha Lahyane 1
@article{CRMATH_2004__338_11_873_0,
author = {Mustapha Lahyane},
title = {Exceptional curves on rational surfaces having {\protect\emph{K}\protect\textsuperscript{2}\ensuremath{\geqslant}0}},
journal = {Comptes Rendus. Math\'ematique},
pages = {873--878},
year = {2004},
publisher = {Elsevier},
volume = {338},
number = {11},
doi = {10.1016/j.crma.2004.03.029},
language = {en},
}
Mustapha Lahyane. Exceptional curves on rational surfaces having K2⩾0. Comptes Rendus. Mathématique, Volume 338 (2004) no. 11, pp. 873-878. doi: 10.1016/j.crma.2004.03.029
[1] Compact Complex Surfaces, Springer, Berlin, 1984
[2] Blowing-up of and their blowings-down, Duke Math. J., Volume 52 (1985), pp. 129-148
[3] Anticanonical rational surfaces, Trans. Amer. Math. Soc., Volume 349 (1997) no. 3, pp. 1191-1208
[4] Rational surfaces with K2>0, Proc. Amer. Math. Soc., Volume 124 (1996) no. 3, pp. 727-733
[5] Exceptional curves on rational numerically elliptic surfaces, J. Algebra, Volume 128 (1990), pp. 405-433
[6] Algebraic Geometry, Graduate Texts in Math., Springer-Verlag, 1977
[7] M. Lahyane, Rational surfaces having only a finite number of exceptional curves, Preprint of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, October 2001
[8] M. Lahyane, Exceptional curves on smooth rational surfaces with −K not Nef and of self-intersection zero, Preprint of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, August 2001
[9] On extremal rational elliptic surfaces, Math. Z., Volume 193 (1986), pp. 537-558
[10] On rational surfaces, II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., Volume 33 (1960), pp. 271-293
Cited by Sources:
Comments - Policy
