[On isotropic sub-Riemannian contact manifolds]
In this Note, we show that contrary to the dimension 3 case, isotropic contact sub-Riemannian manifolds of dimension greater than 3 do not exist.
Dans cette Note, nous montrons que contrairement au cas de la dimension 3, il n'existe guère de variété sous-riemannienne de contact isotrope en dimension supérieure à 3.
Accepted:
Published online:
Abdol-Reza Mansouri 1
@article{CRMATH_2004__339_1_39_0, author = {Abdol-Reza Mansouri}, title = {Sur les vari\'et\'es sous-riemanniennes de contact isotropes}, journal = {Comptes Rendus. Math\'ematique}, pages = {39--42}, publisher = {Elsevier}, volume = {339}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2004.04.009}, language = {fr}, }
Abdol-Reza Mansouri. Sur les variétés sous-riemanniennes de contact isotropes. Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 39-42. doi : 10.1016/j.crma.2004.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.009/
[1] Les problèmes d'équivalence, Oeuvres Complètes, vol. 2, Gauthier-Villars, Paris, 1953
[2] E. Falbel, personal communication, March 2004
[3] On contact sub-Riemannian symmetric spaces, Ann. Sci. École Norm. Sup. (4), Volume 28 (1995) no. 5, pp. 571-589
[4] Constant curvature models in sub-Riemannian geometry, Campinas, 1992 (Mat. Contemp.), Volume 4 (1993), pp. 119-125
[5] The Method of Equivalence and its Applications, SIAM, Philadelphia, 1989
[6] K. Hughen, The geometry of subriemannian three-manifolds, Ph.D. Thesis, Duke University, 1995
[7] A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monographs, vol. 91, American Mathematical Society, 2002
Cited by Sources:
Comments - Policy