Comptes Rendus
Group Theory/Number Theory
Modularity of hypertetrahedral representations
Comptes Rendus. Mathématique, Volume 339 (2004) no. 2, pp. 99-102.

Let F be a number field, GF its absolute Galois group, and ρ:GFGL4(C) an irreducible continuous Galois representation. Let G¯ denote the projective image of ρ in PGL4(C). We say that ρ is hypertetrahedral if G¯ is an extension of A4 by the Klein group V4. In this case, we show that ρ is modular, i.e., ρ corresponds to an automorphic representation π of GL4(AF) such that their L-functions are equal. This gives new examples of irreducible 4-dimensional monomial representations which are modular, but are not induced from normal extensions and are not essentially self-dual.

Soient F un corps de nombres, GF=Gal(F¯/F) et ρ:GFGL4(C) une représentation irréductible et continue. Soit G¯ l'image projective ρ. Nous appellerons une telle représentation hypertétraèdrale si G¯ est une extension de A4 par le groupe de Klein V4. Nous démontrons qu'une représentation hypertétraèdrale est modulaire, i.e., il existe une représentation cuspidale π de GL4(AF) tel que L(s,ρ)=L(s,π). Ceci donne de nouveaux exemples de représentations modulaires qui ne sont pas induites par des extensions normales et ne sont pas essentiellement auto-duales.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.05.003

Kimball Martin 1

1 Caltech 253-37, Pasadena, CA 91125, USA
@article{CRMATH_2004__339_2_99_0,
     author = {Kimball Martin},
     title = {Modularity of hypertetrahedral representations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {99--102},
     publisher = {Elsevier},
     volume = {339},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crma.2004.05.003},
     language = {en},
}
TY  - JOUR
AU  - Kimball Martin
TI  - Modularity of hypertetrahedral representations
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 99
EP  - 102
VL  - 339
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2004.05.003
LA  - en
ID  - CRMATH_2004__339_2_99_0
ER  - 
%0 Journal Article
%A Kimball Martin
%T Modularity of hypertetrahedral representations
%J Comptes Rendus. Mathématique
%D 2004
%P 99-102
%V 339
%N 2
%I Elsevier
%R 10.1016/j.crma.2004.05.003
%G en
%F CRMATH_2004__339_2_99_0
Kimball Martin. Modularity of hypertetrahedral representations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 2, pp. 99-102. doi : 10.1016/j.crma.2004.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.05.003/

[1] J. Arthur; L. Clozel Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann. of Math. Stud., vol. 120, Princeton University Press, 1999

[2] S. Gelbart; H. Jacquet A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup., Volume 11 (1979), pp. 471-542

[3] H. Kim Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc., Volume 16 (2003), pp. 139-183

[4] H. Kim; F. Shahidi Functorial products for GL2×GL3 and functorial symmetric cube for GL2, C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000), pp. 599-604

[5] R.P. Langlands Base Change for GL(2), Ann. of Math. Stud., vol. 96, Princeton University Press, 1980

[6] K. Martin A symplectic case of Artin's conjecture, Math. Res. Let., Volume 10 (2003), pp. 483-492

[7] J. Neukirch; A. Schmidt; K. Wingberg Cohomology of Number Fields, Springer-Verlag, 2000

[8] D. Ramakrishnan Modularity of solvable Artin representations of GO(4)-type, Int. Math. Res. Not. (2002), pp. 1-54

[9] J. Tunnell Artin's conjecture for representation of octahedral type, Bull. Amer. Math. Soc., Volume 5 (1981), pp. 173-175

Cited by Sources:

Comments - Policy