Let F be a number field, its absolute Galois group, and an irreducible continuous Galois representation. Let denote the projective image of ρ in . We say that ρ is hypertetrahedral if is an extension of by the Klein group . In this case, we show that ρ is modular, i.e., ρ corresponds to an automorphic representation π of such that their L-functions are equal. This gives new examples of irreducible 4-dimensional monomial representations which are modular, but are not induced from normal extensions and are not essentially self-dual.
Soient F un corps de nombres, et une représentation irréductible et continue. Soit l'image projective ρ. Nous appellerons une telle représentation hypertétraèdrale si est une extension de par le groupe de Klein . Nous démontrons qu'une représentation hypertétraèdrale est modulaire, i.e., il existe une représentation cuspidale π de tel que . Ceci donne de nouveaux exemples de représentations modulaires qui ne sont pas induites par des extensions normales et ne sont pas essentiellement auto-duales.
Accepted:
Published online:
Kimball Martin 1
@article{CRMATH_2004__339_2_99_0, author = {Kimball Martin}, title = {Modularity of hypertetrahedral representations}, journal = {Comptes Rendus. Math\'ematique}, pages = {99--102}, publisher = {Elsevier}, volume = {339}, number = {2}, year = {2004}, doi = {10.1016/j.crma.2004.05.003}, language = {en}, }
Kimball Martin. Modularity of hypertetrahedral representations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 2, pp. 99-102. doi : 10.1016/j.crma.2004.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.05.003/
[1] Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Ann. of Math. Stud., vol. 120, Princeton University Press, 1999
[2] A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup., Volume 11 (1979), pp. 471-542
[3] Functoriality for the exterior square of and the symmetric fourth of , J. Amer. Math. Soc., Volume 16 (2003), pp. 139-183
[4] Functorial products for and functorial symmetric cube for , C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000), pp. 599-604
[5] Base Change for GL(2), Ann. of Math. Stud., vol. 96, Princeton University Press, 1980
[6] A symplectic case of Artin's conjecture, Math. Res. Let., Volume 10 (2003), pp. 483-492
[7] Cohomology of Number Fields, Springer-Verlag, 2000
[8] Modularity of solvable Artin representations of GO(4)-type, Int. Math. Res. Not. (2002), pp. 1-54
[9] Artin's conjecture for representation of octahedral type, Bull. Amer. Math. Soc., Volume 5 (1981), pp. 173-175
Cited by Sources:
Comments - Policy