[Sur le développement asymptotique du noyau de Bergman.]
On étudions les développements asymptotiques du noyau de la chaleur et de Bergman de l'opérateur de Dirac
We study the asymptotics of the Bergman kernel and the heat kernel of the
Accepté le :
Publié le :
Xianzhe Dai 1 ; Kefeng Liu 2, 3 ; Xiaonan Ma 4
@article{CRMATH_2004__339_3_193_0, author = {Xianzhe Dai and Kefeng Liu and Xiaonan Ma}, title = {On the asymptotic expansion of {Bergman} kernel}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--198}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.011}, language = {en}, }
Xianzhe Dai; Kefeng Liu; Xiaonan Ma. On the asymptotic expansion of Bergman kernel. Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 193-198. doi : 10.1016/j.crma.2004.05.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.05.011/
[1] Heat Kernels and Dirac Operators, Springer-Verlag, 1992
[2] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[3] The asymptotics of the Ray–Singer analytic torsion associated with high powers of a positive line bundle, Commun. Math. Phys., Volume 125 (1989), pp. 355-367
[4] Sur la singularité des noyaux de Bergman et de Szegö, Astérisque, Volume 34–35 (1976), pp. 123-164
[5] The Bergman kernel and a theorem of Tian, Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1-23
[6] On the asymptotic expansion of Bergman kernel | arXiv
[7] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522
[8] The Riemann–Roch theorem for V-manifolds, Osaka J. Math., Volume 16 (1979), pp. 151-159
[9] On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273
[10] X. Ma, Orbifolds and analytic torsions, Preprint
[11] The
[12] Canonical coordinates and Bergman metrics, Comm. Anal. Geom., Volume 6 (1998), pp. 589-631
[13] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990), pp. 99-130
[14] X. Wang, Thesis, 2002
[15] Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, Volume 6 (1998), pp. 317-331
- Szegö kernel asymptotic expansion on strongly pseudoconvex CR manifolds with S1 action, International Journal of Mathematics, Volume 29 (2018) no. 09, p. 1850061 | DOI:10.1142/s0129167x18500611
- Asymptotics of orbifold Bergman kernels: mixed curvature case, Archiv der Mathematik, Volume 101 (2013) no. 5, p. 485 | DOI:10.1007/s00013-013-0575-3
- Bergman Kernel from Path Integral, Communications in Mathematical Physics, Volume 293 (2010) no. 1, p. 205 | DOI:10.1007/s00220-009-0915-0
- Coherent states in geometric quantization, Journal of Geometry and Physics, Volume 57 (2007) no. 2, p. 531 | DOI:10.1016/j.geomphys.2006.04.007
- THE FIRST COEFFICIENTS OF THE ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL OF THESpincDIRAC OPERATOR, International Journal of Mathematics, Volume 17 (2006) no. 06, p. 737 | DOI:10.1142/s0129167x06003667
Cité par 5 documents. Sources : Crossref
Commentaires - Politique