We study the asymptotics of the Bergman kernel and the heat kernel of the Dirac operator on high tensor powers of a line bundle.
On étudions les développements asymptotiques du noyau de la chaleur et de Bergman de l'opérateur de Dirac associé à une puissance grande d'un fibré en droites positif.
Accepted:
Published online:
Xianzhe Dai 1; Kefeng Liu 2, 3; Xiaonan Ma 4
@article{CRMATH_2004__339_3_193_0, author = {Xianzhe Dai and Kefeng Liu and Xiaonan Ma}, title = {On the asymptotic expansion of {Bergman} kernel}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--198}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.011}, language = {en}, }
Xianzhe Dai; Kefeng Liu; Xiaonan Ma. On the asymptotic expansion of Bergman kernel. Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 193-198. doi : 10.1016/j.crma.2004.05.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.05.011/
[1] Heat Kernels and Dirac Operators, Springer-Verlag, 1992
[2] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[3] The asymptotics of the Ray–Singer analytic torsion associated with high powers of a positive line bundle, Commun. Math. Phys., Volume 125 (1989), pp. 355-367
[4] Sur la singularité des noyaux de Bergman et de Szegö, Astérisque, Volume 34–35 (1976), pp. 123-164
[5] The Bergman kernel and a theorem of Tian, Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1-23
[6] On the asymptotic expansion of Bergman kernel | arXiv
[7] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522
[8] The Riemann–Roch theorem for V-manifolds, Osaka J. Math., Volume 16 (1979), pp. 151-159
[9] On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273
[10] X. Ma, Orbifolds and analytic torsions, Preprint
[11] The Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002) no. 3, pp. 651-664
[12] Canonical coordinates and Bergman metrics, Comm. Anal. Geom., Volume 6 (1998), pp. 589-631
[13] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990), pp. 99-130
[14] X. Wang, Thesis, 2002
[15] Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, Volume 6 (1998), pp. 317-331
Cited by Sources:
Comments - Policy