[Comparison of volumes of Riemannian manifolds.]
Using the rigidity result of Besson, Courtois and Gallot, and also the notion of intersection of metrics, we compare volumes of Riemannian manifolds by means of lengths of their periodic geodesics.
À l'aide du résultat de rigidité de Besson, Courtois et Gallot, et aussi la notion d'intersection des métriques, nous comparons les volumes des variétés riemanniennes à partir des longueurs de leurs géodésiques périodiques.
Accepted:
Published online:
Hamid-Reza Fanaï 1
@article{CRMATH_2004__339_3_199_0, author = {Hamid-Reza Fana{\"\i}}, title = {Comparaison des volumes des vari\'et\'es riemanniennes}, journal = {Comptes Rendus. Math\'ematique}, pages = {199--201}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.019}, language = {fr}, }
Hamid-Reza Fanaï. Comparaison des volumes des variétés riemanniennes. Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 199-201. doi : 10.1016/j.crma.2004.05.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.05.019/
[1] Entropies et rigidités des espaces localement symétriques de courbure strictement négative, GAFA, Volume 5 (1995), pp. 731-799
[2] C. Croke, Rigidity theorems in riemannian geometry, preprint
[3] C. Croke, N. Dairbekov, Lengths and volumes in riemannian manifolds, preprint
[4] Spectre marqué des longueurs et métriques conformément équivalentes, Bull. Belg. Math. Soc., Volume 5 (1998), pp. 525-528
[5] Volume growth, entropy and the geodesic stretch, Math. Res. Lett., Volume 2 (1995), pp. 39-58
[6] The uniquenesse of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. Math., Volume 148 (1998), pp. 291-314
[7] Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Anal. Appl., Volume 3 (1969), pp. 335-336
Cited by Sources:
Comments - Politique