[Un nouveau concept de mesure réduite pour des équations elliptiques non linéaires.]
On étudie l'existence de solutions du problème non linéaire
(ii) |
We study the existence of solutions of the nonlinear problem
(i) |
Publié le :
Haïm Brezis 1, 2 ; Moshe Marcus 3 ; Augusto C. Ponce 1, 2
@article{CRMATH_2004__339_3_169_0, author = {Ha{\"\i}m Brezis and Moshe Marcus and Augusto C. Ponce}, title = {A new concept of reduced measure for nonlinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {169--174}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.012}, language = {en}, }
TY - JOUR AU - Haïm Brezis AU - Moshe Marcus AU - Augusto C. Ponce TI - A new concept of reduced measure for nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2004 SP - 169 EP - 174 VL - 339 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2004.05.012 LA - en ID - CRMATH_2004__339_3_169_0 ER -
Haïm Brezis; Moshe Marcus; Augusto C. Ponce. A new concept of reduced measure for nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 169-174. doi : 10.1016/j.crma.2004.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.05.012/
[1] Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble), Volume 34 (1984), pp. 185-206
[2] Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equations, Volume 3 (2004), pp. 673-770
[3] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996), pp. 539-551
[4] Some variational problems of the Thomas–Fermi type, Proc. Internat. School, Erice, 1978 (R.W. Cottle; F. Giannessi; J.-L. Lions, eds.), Wiley, Chichester (1980), pp. 53-73
[5] Nonlinear elliptic equations involving measures (C. Bardos; A. Damlamian; J.I. Diaz; J. Hernandez, eds.), Contributions to Nonlinear Partial Differential Equations, Madrid, 1981, Pitman, Boston, MA, 1983, pp. 82-89
[6] Kato's inequality when Δu is a measure, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 599-604
[7] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, in preparation
[8] Semilinear second-order elliptic equations in
[9] L. Dupaigne, A.C. Ponce, Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.), in press
[10] On a semilinear equation in
- Nonlinear elliptic equations with self-adjoint integro-differential operators and measure data under sign condition on the nonlinearity, Advanced Nonlinear Studies, Volume 25 (2025) no. 1, p. 171 | DOI:10.1515/ans-2023-0153
- On a localization-in-frequency approach for a class of elliptic problems with singular boundary data, Proceedings of the Royal Society of Edinburgh: Section A Mathematics (2024), p. 1 | DOI:10.1017/prm.2024.61
- A Double Phase Problem with a Nonlinear Boundary Condition, Bulletin of the Malaysian Mathematical Sciences Society, Volume 46 (2023) no. 4 | DOI:10.1007/s40840-023-01513-2
- Schrödinger equations with smooth measure potential and general measure data, Nonlinear Analysis, Volume 218 (2022), p. 112774 | DOI:10.1016/j.na.2021.112774
- Debye Layer in Poisson–Boltzmann Model with Isolated Singularities, Archive for Rational Mechanics and Analysis, Volume 236 (2020) no. 1, p. 289 | DOI:10.1007/s00205-019-01466-6
- Quasilinear elliptic equations with exponential nonlinearity and measure data, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 6, p. 2883 | DOI:10.1002/mma.6088
- Reduced measures for semilinear elliptic equations involving Dirichlet operators, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 4 | DOI:10.1007/s00526-016-1023-6
- Uniqueness Criteria for the Adjoint Equation in State-Constrained Elliptic Optimal Control, Numerical Functional Analysis and Optimization, Volume 32 (2011) no. 9, p. 983 | DOI:10.1080/01630563.2011.587074
- Measure-valued solutions and the phenomenon of blow-down in logarithmic diffusion, Journal of Mathematical Analysis and Applications, Volume 352 (2009) no. 1, p. 515 | DOI:10.1016/j.jmaa.2008.06.032
- Elliptic equations with vertical asymptotes in the nonlinear term, Journal d'Analyse Mathématique, Volume 98 (2006) no. 1, p. 349 | DOI:10.1007/bf02790280
- Orlicz Capacities and Applications to PDEs and Sobolev Mappings, Elliptic and Parabolic Problems, Volume 63 (2005), p. 259 | DOI:10.1007/3-7643-7384-9_26
- How to Construct Good Measures, Elliptic and Parabolic Problems, Volume 63 (2005), p. 375 | DOI:10.1007/3-7643-7384-9_37
- The Porous Medium Equation. New Contractivity Results, Elliptic and Parabolic Problems, Volume 63 (2005), p. 433 | DOI:10.1007/3-7643-7384-9_42
- Reduced measures on the boundary, Journal of Functional Analysis, Volume 229 (2005) no. 1, p. 95 | DOI:10.1016/j.jfa.2004.12.001
Cité par 14 documents. Sources : Crossref
Commentaires - Politique