[Un nouveau concept de mesure réduite pour des équations elliptiques non linéaires.]
On étudie l'existence de solutions du problème non linéaire
(ii) |
We study the existence of solutions of the nonlinear problem
(i) |
Publié le :
Haïm Brezis 1, 2 ; Moshe Marcus 3 ; Augusto C. Ponce 1, 2
@article{CRMATH_2004__339_3_169_0, author = {Ha{\"\i}m Brezis and Moshe Marcus and Augusto C. Ponce}, title = {A new concept of reduced measure for nonlinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {169--174}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.012}, language = {en}, }
TY - JOUR AU - Haïm Brezis AU - Moshe Marcus AU - Augusto C. Ponce TI - A new concept of reduced measure for nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2004 SP - 169 EP - 174 VL - 339 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2004.05.012 LA - en ID - CRMATH_2004__339_3_169_0 ER -
Haïm Brezis; Moshe Marcus; Augusto C. Ponce. A new concept of reduced measure for nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 169-174. doi : 10.1016/j.crma.2004.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.05.012/
[1] Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble), Volume 34 (1984), pp. 185-206
[2] Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equations, Volume 3 (2004), pp. 673-770
[3] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996), pp. 539-551
[4] Some variational problems of the Thomas–Fermi type, Proc. Internat. School, Erice, 1978 (R.W. Cottle; F. Giannessi; J.-L. Lions, eds.), Wiley, Chichester (1980), pp. 53-73
[5] Nonlinear elliptic equations involving measures (C. Bardos; A. Damlamian; J.I. Diaz; J. Hernandez, eds.), Contributions to Nonlinear Partial Differential Equations, Madrid, 1981, Pitman, Boston, MA, 1983, pp. 82-89
[6] Kato's inequality when Δu is a measure, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 599-604
[7] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, in preparation
[8] Semilinear second-order elliptic equations in , J. Math. Soc. Japan, Volume 25 (1973), pp. 565-590
[9] L. Dupaigne, A.C. Ponce, Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.), in press
[10] On a semilinear equation in involving bounded measures, Proc. Roy. Soc. Edinburgh Sect. A, Volume 95 (1983), pp. 181-202
Cité par Sources :
Commentaires - Politique