This Note is devoted to the analysis of some propagation phenomena for reaction–diffusion–advection equations with Fisher or Kolmogorov–Petrovsky–Piskunov (KPP) type nonlinearities. Some formulæ for the speed of propagation of pulsating fronts in periodic domains are given. These allow us to describe the influence of the various terms in the equation or of geometry on propagation. We also derive results for propagation speed in more general domains without periodicity.
Cette Note est consacrée à l'analyse de phénomènes de propagation pour des équations de réaction–diffusion–advection du type Fisher ou Kolmogorov–Petrovsky–Piskunov (KPP). On donne des formules pour les vitesses de propagation de fronts pulsatoires dans des domaines périodiques. Celles-ci permettent de mettre en lumière l'influence des différents termes de l'équation ou de la géométrie sur la propagation. On considère également le cas de domaines généraux.
Published online:
Henri Berestycki 1; François Hamel 2; Nikolai Nadirashvili 3
@article{CRMATH_2004__339_3_163_0, author = {Henri Berestycki and Fran\c{c}ois Hamel and Nikolai Nadirashvili}, title = {Propagation speed for reaction{\textendash}diffusion equations in general domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {163--168}, publisher = {Elsevier}, volume = {339}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2004.05.020}, language = {en}, }
TY - JOUR AU - Henri Berestycki AU - François Hamel AU - Nikolai Nadirashvili TI - Propagation speed for reaction–diffusion equations in general domains JO - Comptes Rendus. Mathématique PY - 2004 SP - 163 EP - 168 VL - 339 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2004.05.020 LA - en ID - CRMATH_2004__339_3_163_0 ER -
Henri Berestycki; François Hamel; Nikolai Nadirashvili. Propagation speed for reaction–diffusion equations in general domains. Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 163-168. doi : 10.1016/j.crma.2004.05.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.05.020/
[1] Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33-76
[2] Front propagation in periodic excitable media, Commun. Pure Appl. Math., Volume 55 (2002), pp. 949-1032
[3] H. Berestycki, F. Hamel, N. Nadirashvili, The principal eigenvalue of elliptic operators with large drift and applications to nonlinear propagation phenomena, Commun. Math. Phys., in press
[4] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems. I – Periodic framework, J. Eur. Math. Soc., in press
[5] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems. II – General domains, Preprint
[6] Heat Kernels and Spectral Theory, Cambridge University Press, 1989
[7] The advance of advantageous genes, Ann. Eugenics, Volume 7 (1937), pp. 335-369
[8] Stochastic analysis and applications (M. Pinsky, ed.), Adv. Probab. Rel. Topics, Dekker, 1984, pp. 147-166
[9] On the propagation of concentration waves in periodic and random media, Soviet Math. Dokl., Volume 20 (1979), pp. 1282-1286
[10] Travelling fronts in nonlinear diffusion equations, J. Math. Biol., Volume 2 (1975), pp. 251-263
[11] Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, B. Univ. d'Etat à Moscou, Sér. Intern. A, Volume 1 (1937), pp. 1-26
[12] On spreading speeds and traveling waves for growth and migration in periodic habitat, J. Math. Biol., Volume 45 (2002), pp. 511-548
Cited by Sources:
Comments - Policy