A real polynomial in one variable is hyperbolic if it has only real roots. A hyperbolic polynomial is very hyperbolic if it has hyperbolic primitives of all orders. A polynomial P is stably hyperbolic if is hyperbolic for suitable and Q (polynomial of degree ). We present some geometric properties of the domains of very hyperbolic and of stably hyperbolic polynomials in the family .
Un polynôme réel d'une variable est hyperbolique si toutes ses racines sont réelles. Un polynôme hyperbolique est très hyperbolique s'il a des primitives hyperboliques de tout ordre. Un polynôme P est stablement hyperbolique si est hyperbolique pour certains et Q (polynôme de degré ). Nous présentons des propriétés géométriques des domaines de polynômes très hyperboliques et stablement hyperboliques dans la famille .
Accepted:
Published online:
Vladimir Petrov Kostov 1
@article{CRMATH_2004__339_3_157_0,
author = {Vladimir Petrov Kostov},
title = {Very hyperbolic and stably hyperbolic polynomials},
journal = {Comptes Rendus. Math\'ematique},
pages = {157--162},
year = {2004},
publisher = {Elsevier},
volume = {339},
number = {3},
doi = {10.1016/j.crma.2004.05.010},
language = {en},
}
Vladimir Petrov Kostov. Very hyperbolic and stably hyperbolic polynomials. Comptes Rendus. Mathématique, Volume 339 (2004) no. 3, pp. 157-162. doi: 10.1016/j.crma.2004.05.010
[1] On the hyperbolicity domain of the polynomial , Serdica Math. J., Volume 25 (1999) no. 1, pp. 47-70
[2] V.P. Kostov, Very hyperbolic polynomials in one variable, Manuscript, 10 p
[3] V.P. Kostov, Very hyperbolic polynomials, Funct. Anal. Appl., in press
[4] On the geometric properties of Vandermonde's mapping and on the problem of moments, Proc. Roy. Soc. Edinburgh, Volume 112 (1989) no. 3–4, pp. 203-211
[5] I. Meguerditchian, Géométrie du discriminant réel et des polynômes hyperboliques, Thèse de doctorat, Univ. de Rennes I, soutenue le 24.01.1991
Cited by Sources:
Comments - Policy
