[Solutions homoclines de systèmes réversibles en présence d'un spectre essentiel.]
In this Note we consider bifurcations of a class of infinite dimensional reversible dynamical systems. These systems possess a family of equilibrium solutions near the origin. We also assume that the linearized operator at the origin
On étudie les bifurcations d'une classe de systèmes dynamiques réversibles de dimension infinie. Ces systèmes possèdent une famille de solutions stationnaires près de l'origine. On suppose que l'opérateur linéarisé à l'origine
Accepté le :
Publié le :
Matthieu Barrandon 1
@article{CRMATH_2004__339_8_591_0, author = {Matthieu Barrandon}, title = {Homoclinic solutions of reversible systems possessing an essential spectrum}, journal = {Comptes Rendus. Math\'ematique}, pages = {591--596}, publisher = {Elsevier}, volume = {339}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2004.07.001}, language = {en}, }
Matthieu Barrandon. Homoclinic solutions of reversible systems possessing an essential spectrum. Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 591-596. doi : 10.1016/j.crma.2004.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.001/
[1] On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc., Volume 364 (1994), pp. 399-419
[2] Uniqueness and related analytic properties for the Benjamin–Ono equation – a nonlinear Neumann problem in the plane, Acta Math., Volume 105 (1989), pp. 1-49
[3] M. Barrandon, Reversible bifurcation of homoclinic solutions in presence of an essential spectrum, Preprint INLN, 2003
[4] Internal waves of permanent form in fluids of great depth, J. Fluid Mech., Volume 29 (1967), pp. 559-592
[5] Water-waves as a spatial dynamical system (S. Friedlander; D. Serre, eds.), Handbook of Mathematical Fluid Dynamics, vol. II, Elsevier, 2003, pp. 443-499
[6] Gravity traveling waves for two superposed fluid layers of infinite depth: a new type of bifurcation, Philos. Trans. Roy. Soc. London Ser. A, Volume 360 (2002), pp. 2245-2336
[7] Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, Volume 39 (1975), pp. 1082-1091
[8] Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Anal., Volume 30 (1997), pp. 5481-5490
Cité par Sources :
Commentaires - Politique