[Solutions homoclines de systèmes réversibles en présence d'un spectre essentiel.]
On étudie les bifurcations d'une classe de systèmes dynamiques réversibles de dimension infinie. Ces systèmes possèdent une famille de solutions stationnaires près de l'origine. On suppose que l'opérateur linéarisé à l'origine
In this Note we consider bifurcations of a class of infinite dimensional reversible dynamical systems. These systems possess a family of equilibrium solutions near the origin. We also assume that the linearized operator at the origin
Accepté le :
Publié le :
Matthieu Barrandon 1
@article{CRMATH_2004__339_8_591_0, author = {Matthieu Barrandon}, title = {Homoclinic solutions of reversible systems possessing an essential spectrum}, journal = {Comptes Rendus. Math\'ematique}, pages = {591--596}, publisher = {Elsevier}, volume = {339}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2004.07.001}, language = {en}, }
Matthieu Barrandon. Homoclinic solutions of reversible systems possessing an essential spectrum. Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 591-596. doi : 10.1016/j.crma.2004.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.001/
[1] On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc., Volume 364 (1994), pp. 399-419
[2] Uniqueness and related analytic properties for the Benjamin–Ono equation – a nonlinear Neumann problem in the plane, Acta Math., Volume 105 (1989), pp. 1-49
[3] M. Barrandon, Reversible bifurcation of homoclinic solutions in presence of an essential spectrum, Preprint INLN, 2003
[4] Internal waves of permanent form in fluids of great depth, J. Fluid Mech., Volume 29 (1967), pp. 559-592
[5] Water-waves as a spatial dynamical system (S. Friedlander; D. Serre, eds.), Handbook of Mathematical Fluid Dynamics, vol. II, Elsevier, 2003, pp. 443-499
[6] Gravity traveling waves for two superposed fluid layers of infinite depth: a new type of bifurcation, Philos. Trans. Roy. Soc. London Ser. A, Volume 360 (2002), pp. 2245-2336
[7] Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, Volume 39 (1975), pp. 1082-1091
[8] Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Anal., Volume 30 (1997), pp. 5481-5490
Cité par Sources :
Commentaires - Politique