[Approximation numérique d'un modèle de dérive-diffusion quantique.]
Cette Note est consacrée à la discrétisation et à la simulation numérique d'un modèle de dérive-diffusion quantique qui a été dérivé récemment. Nous définissons un schéma numérique implicite dont la résolution se ramène à un problème de minimisation convexe. Par ailleurs, ce schéma préserve les propriétés physiques vérifiées par le modèle continu : conservation de la charge totale, positivité de la densité et dissipation d'une entropie. Enfin, nous illustrons ces propriétés à l'aide de simulations numériques.
This Note is devoted to the discretization and numerical simulation of a new quantum drift-diffusion model that was recently derived. We define an implicit numerical scheme which is equivalent to a convex minimization problem and which preserves the physical properties of the continuous model: charge conservation, positivity of the density and dissipation of an entropy. We illustrate these results by some numerical simulations.
Accepté le :
Publié le :
Samy Gallego 1 ; Florian Méhats 1
@article{CRMATH_2004__339_7_519_0, author = {Samy Gallego and Florian M\'ehats}, title = {Numerical approximation of a quantum drift-diffusion model}, journal = {Comptes Rendus. Math\'ematique}, pages = {519--524}, publisher = {Elsevier}, volume = {339}, number = {7}, year = {2004}, doi = {10.1016/j.crma.2004.07.022}, language = {en}, }
Samy Gallego; Florian Méhats. Numerical approximation of a quantum drift-diffusion model. Comptes Rendus. Mathématique, Volume 339 (2004) no. 7, pp. 519-524. doi : 10.1016/j.crma.2004.07.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.022/
[1] Quantum correction of the equation of state of an electron gas in a semiconductor, Phys. Rev. B, Volume 39 (1989), pp. 9536-9540
[2] On the stationary quantum drift-diffusion model, Z. Angew. Math. Phys., Volume 49 (1998) no. 2, pp. 251-275
[3] P. Degond, F. Méhats, C. Ringhofer, Quantum energy-transport and drift-diffusion models, submitted for publication
[4] P. Degond, F. Méhats, C. Ringhofer, Quantum hydrodynamic models derived from entropy principle, Contemp. Math., in press
[5] Quantum moment hydrodynamics and the entropy principle, J. Statist. Phys., Volume 112 (2003) no. 3/4, pp. 587-628
[6] Binary quantum collision operators conserving mass momentum and energy, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003) no. 9, pp. 785-790
[7] S. Gallego, F. Méhats, Entropic discretization of a quantum drift-diffusion model, submitted for publication
[8] Quasi-Hydrodynamic Semiconductor Equations, Progress in Nonlinear Differential Equations, Birkhäuser, 2001
[9] About a stationary Schrödinger–Poisson system with Kohn–Sham potential in a bounded two- or three-dimensional domain, Nonlinear Anal., Volume 41 (2000), pp. 33-72
[10] Moment closure hierarchies for kinetic theories, J. Statist. Phys., Volume 83 (1996) no. 5/6, pp. 1021-1065
[11] A stationary Schrödinger–Poisson system arising from the modelling of electronic devices, Forum Math., Volume 2 (1990) no. 5, pp. 489-510
[12] A variational formulation of Schrödinger–Poisson systems in dimension , Commun. Partial Differential Equations, Volume 18 (1993) no. 7/8, pp. 1125-1147
[13] The linearized transient quantum drift diffusion model – stability of stationary states, Z. Angew. Math. Mech. (ZAMM), Volume 80 (2000) no. 5, pp. 327-344
[14] Methods of Modern Mathematical Physics, vol. II, Fourier Analysis, Self-Adjointness, Methods of Modern Mathematical Physics, vol. IV, Analysis of Operators, Academic Press, New York, 1975
[15] Matrices. Theory and Applications, Grad. Texts in Math., vol. 216, Springer-Verlag, New York, 2002 (translated from the 2001 French original)
Cité par Sources :
Commentaires - Politique