We consider the lowest-order Raviart–Thomas mixed finite element method for elliptic problems on simplicial meshes in two or three space dimensions. This method produces saddle-point type problems for scalar and flux unknowns. We show how to easily eliminate the flux unknowns, which implies an equivalence between this method and a particular multi-point finite volume scheme, without any approximate numerical integration. We describe the stencil of the final matrix and give sufficient conditions for its symmetry and positive definiteness. We present a numerical example illustrating the performance of the proposed method.
Nous considérons la méthode des éléments finis mixtes de Raviart–Thomas de plus bas degré pour des problèmes elliptiques sur les maillages composés de triangles en dimension deux d'espace et de tétraèdres en dimension trois d'espace. Cette méthode aboutit à des problèmes de type point-selle pour les inconnues scalaires et les flux. Nous montrons comment facilement éliminer les flux, ce qui implique l'équivalence entre cette méthode et une méthode de type volumes finis à plusieurs points et ceci sans aucune intégration numérique approchée. Nous décrivons le nombre maximal des éléments non nuls sur chaque ligne de la matrice finale et présentons les conditions suffisantes pour qu'elle soit symétrique et définie positive. Nous présentons un essai numérique montrant la performance de la méthode proposée.
Accepted:
Published online:
Martin Vohralík 1, 2
@article{CRMATH_2004__339_7_525_0, author = {Martin Vohral{\'\i}k}, title = {Equivalence between mixed finite element and multi-point finite volume methods}, journal = {Comptes Rendus. Math\'ematique}, pages = {525--528}, publisher = {Elsevier}, volume = {339}, number = {7}, year = {2004}, doi = {10.1016/j.crma.2004.08.004}, language = {en}, }
Martin Vohralík. Equivalence between mixed finite element and multi-point finite volume methods. Comptes Rendus. Mathématique, Volume 339 (2004) no. 7, pp. 525-528. doi : 10.1016/j.crma.2004.08.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.08.004/
[1] Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, Modél. Math. Anal. Numér., Volume 19 (1985), pp. 7-32
[2] Connection between finite volume and mixed finite element methods, Math. Model. Numer. Anal. (M2AN), Volume 30 (1996), pp. 445-465
[3] Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991
[4] Mixed finite elements in , Numer. Math., Volume 35 (1980), pp. 315-341
[5] A mixed finite element method for 2-nd order elliptic problems (I. Galligani; E. Magenes, eds.), Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., vol. 606, Springer, Berlin, 1977, pp. 292-315
[6] M. Vohralík, Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes, in preparation
[7] From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions, Int. J. Numer. Methods Engrg., Volume 59 (2004), pp. 365-388
Cited by Sources:
Comments - Policy