[Un schéma AP pour l'équation de Schrödinger dans la limite semi-classique]
Cette Note est consacrée à la discrétisation de la formulation fluide de l'équation de Schrödinger (le système de Madelung) en formulations eulerienne et lagrangienne. Nous proposons des schémas pour ces deux formulations qui sont implicites dans le terme de flux de masse. Cette caractéristique nous permet de montrer que ces schémas sont asymptotiquement préservatifs, c'est à dire qu'ils fournissent une discrétisation des équations de Hamilton–Jacobi semi-classiques lorsque la constante de Planck adimensionnée ε tend vers 0. De plus, une analyse linéarisée permet de montrer que ces schémas sont asymptotiquement stables, c'est à dire que leur contrainte de stabilité reste bornée lorsque ε tend vers 0. Des simulations numériques sont proposées ; elles confirment que les schémas considérés permettent de fournir une passerelle numérique entre les échelles quantiques et semi-classiques.
This Note is devoted to the discretization of the fluid formulation of the Schrödinger equation (the Madelung system). We explore both the discretization of the system in Eulerian coordinates and Lagrangian coordinates. We propose schemes for these two formulations which are implicit in the mass flux term. This feature allows us to show that these schemes are asymptotic preserving i.e. they provide discretizations of the semi-classical Hamilton–Jacobi equation when the scaled Planck constant ε tends to 0. An analysis performed on the linearized systems also shows that they are asymptotically stable i.e. their stability condition remains bounded as ε tends to 0. Numerical simulations are given; they confirm that the considered schemes allow us to numerically bridge the quantum and semi-classical scales.
Accepté le :
Publié le :
Pierre Degond 1 ; Samy Gallego 1 ; Florian Méhats 2
@article{CRMATH_2007__345_9_531_0, author = {Pierre Degond and Samy Gallego and Florian M\'ehats}, title = {An asymptotic preserving scheme for the {Schr\"odinger} equation in the semiclassical limit}, journal = {Comptes Rendus. Math\'ematique}, pages = {531--536}, publisher = {Elsevier}, volume = {345}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.10.014}, language = {en}, }
TY - JOUR AU - Pierre Degond AU - Samy Gallego AU - Florian Méhats TI - An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit JO - Comptes Rendus. Mathématique PY - 2007 SP - 531 EP - 536 VL - 345 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2007.10.014 LA - en ID - CRMATH_2007__345_9_531_0 ER -
Pierre Degond; Samy Gallego; Florian Méhats. An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 531-536. doi : 10.1016/j.crma.2007.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.014/
[1] On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., Volume 175 (2002), pp. 487-524
[2] Quantum tunneling dynamics using hydrodynamic trajectories, J. Chem. Phys., Volume 112 (2000) no. 22, pp. 9703-9710
[3] Formation of δ-schocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations, SIAM J. Math. Anal., Volume 34 (2003), pp. 925-938
[4] Quantum wave packet dynamics with trajectories, Phys. Rev., Volume 82 (1999) no. 26, pp. 5190-5193
[5] Quanten theorie in Hydrodynamischer Form, Z. Physik, Volume 40 (1927), p. 322
[6] Numerical approximation of quadratic observables of Schrödinger type equations in the semi-classical limit, Numer. Math., Volume 81 (1999), pp. 595-630
[7] A Wigner-measure analysis of the Dufort–Frankel scheme for the Schrödinger equation, SIAM J. Numer. Anal., Volume 40 (2002), pp. 1281-1310
[8] Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems, J. Chem. Phys., Volume 111 (1999) no. 6, pp. 2423-2435
[9] Quantum trajectories for resonant scattering, Internat. J. Quantum Chem., Volume 81 (2001) no. 3, pp. 206-213
[10] Particle method for numerical solution of the time-dependent Schrödinger equation, J. Chem. Phys., Volume 54 (1971) no. 8, pp. 3534-3541
[11] Electronic transitions with quantum trajectories, J. Chem. Phys., Volume 114 (2001) no. 12, pp. 5113-5116
Cité par Sources :
Commentaires - Politique