Comptes Rendus
Probability Theory
On the multidimensional stochastic equation Yn+1=AnYn+Bn
[Sur l'équation vectorielle stochastique Yn+1=AnYn+Bn.]
Comptes Rendus. Mathématique, Volume 339 (2004) no. 7, pp. 499-502.

On étudie le comportement à l'infini de la queue de la solution stationnaire d'un processus auto-régressif linéaire multidimensionnel à coefficients aléatoires. On donne une vaste classe de coefficients multiplicatifs vérifiant une condition d'irréductibilité et de proximalité qui conduisent à un comportement de type queue polynomiale.

We study the behavior at infinity of the tail of the stationary solution of a multidimensional linear auto-regressive process with random coefficients. We exhibit an extended class of multiplicative coefficients satisfying a condition of irreducibility and proximality that yield to a heavy tail behavior.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.07.024

Benoîte de Saporta 1 ; Yves Guivarc'h 1 ; Emile Le Page 2

1 IRMAR, université de Rennes I, campus de Beaulieu, 35042 Rennes cedex, France
2 LMAM, université de Bretagne Sud, centre Yves Coppens, campus de Tohannic, BP 573, 56017 Vannes, France
@article{CRMATH_2004__339_7_499_0,
     author = {Beno{\^\i}te de Saporta and Yves Guivarc'h and Emile Le Page},
     title = {On the multidimensional stochastic equation $ {Y}_{n+1}={A}_{n}{Y}_{n}+{B}_{n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {499--502},
     publisher = {Elsevier},
     volume = {339},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crma.2004.07.024},
     language = {en},
}
TY  - JOUR
AU  - Benoîte de Saporta
AU  - Yves Guivarc'h
AU  - Emile Le Page
TI  - On the multidimensional stochastic equation $ {Y}_{n+1}={A}_{n}{Y}_{n}+{B}_{n}$
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 499
EP  - 502
VL  - 339
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2004.07.024
LA  - en
ID  - CRMATH_2004__339_7_499_0
ER  - 
%0 Journal Article
%A Benoîte de Saporta
%A Yves Guivarc'h
%A Emile Le Page
%T On the multidimensional stochastic equation $ {Y}_{n+1}={A}_{n}{Y}_{n}+{B}_{n}$
%J Comptes Rendus. Mathématique
%D 2004
%P 499-502
%V 339
%N 7
%I Elsevier
%R 10.1016/j.crma.2004.07.024
%G en
%F CRMATH_2004__339_7_499_0
Benoîte de Saporta; Yves Guivarc'h; Emile Le Page. On the multidimensional stochastic equation $ {Y}_{n+1}={A}_{n}{Y}_{n}+{B}_{n}$. Comptes Rendus. Mathématique, Volume 339 (2004) no. 7, pp. 499-502. doi : 10.1016/j.crma.2004.07.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.024/

[1] A. Brandt The stochastic equation Yn+1=AnYn+Bn with stationary coefficients, Adv. Appl. Probab., Volume 18 (1986), pp. 211-220

[2] H. Furstenberg Noncommuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428

[3] H. Furstenberg Boundary theory and stochastic processes on homogeneous spaces, Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., vol. XXVI, American Mathematical Society, 1973, pp. 193-229

[4] C.M. Goldie Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., Volume 1 (1991), pp. 26-166

[5] I.Ya. Goldsheid; Y. Guivarc'h Zariski closure and the dimension of the Gaussian law of the product of random matrices, Probab. Theory Related Fields, Volume 105 (1996), pp. 109-142

[6] Y. Guivarc'h; E. Le Page Simplicité de spectres de Lyapunov et propriété d'isolation spectrale pour une famille d'opérateurs de transfert sur l'espace projectif (V. Kaimanovitch, ed.), Random Walks and Geometry, Workshop Vienna 2001, De Gruyter, 2004, pp. 181-259

[7] Y. Guivarc'h; A. Raugi Products of random matrices: convergence theorems, Random matrices and their applications, Contemp. Math., Volume 50 (1986), pp. 31-54

[8] H. Kesten Random difference equations and renewal theory for products of random matrices, Acta Math., Volume 131 (1973), pp. 207-248

[9] H. Kesten Renewal theory for functionals of a Markov chain with general state space, Ann. Probab., Volume 2 (1974), pp. 355-386

[10] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983

Cité par Sources :

Commentaires - Politique