Comptes Rendus
Probability Theory
On the multidimensional stochastic equation Yn+1=AnYn+Bn
[Sur l'équation vectorielle stochastique Yn+1=AnYn+Bn.]
Comptes Rendus. Mathématique, Volume 339 (2004) no. 7, pp. 499-502.

We study the behavior at infinity of the tail of the stationary solution of a multidimensional linear auto-regressive process with random coefficients. We exhibit an extended class of multiplicative coefficients satisfying a condition of irreducibility and proximality that yield to a heavy tail behavior.

On étudie le comportement à l'infini de la queue de la solution stationnaire d'un processus auto-régressif linéaire multidimensionnel à coefficients aléatoires. On donne une vaste classe de coefficients multiplicatifs vérifiant une condition d'irréductibilité et de proximalité qui conduisent à un comportement de type queue polynomiale.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.07.024

Benoîte de Saporta 1 ; Yves Guivarc'h 1 ; Emile Le Page 2

1 IRMAR, université de Rennes I, campus de Beaulieu, 35042 Rennes cedex, France
2 LMAM, université de Bretagne Sud, centre Yves Coppens, campus de Tohannic, BP 573, 56017 Vannes, France
@article{CRMATH_2004__339_7_499_0,
     author = {Beno{\^\i}te de Saporta and Yves Guivarc'h and Emile Le Page},
     title = {On the multidimensional stochastic equation $ {Y}_{n+1}={A}_{n}{Y}_{n}+{B}_{n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {499--502},
     publisher = {Elsevier},
     volume = {339},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crma.2004.07.024},
     language = {en},
}
TY  - JOUR
AU  - Benoîte de Saporta
AU  - Yves Guivarc'h
AU  - Emile Le Page
TI  - On the multidimensional stochastic equation $ {Y}_{n+1}={A}_{n}{Y}_{n}+{B}_{n}$
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 499
EP  - 502
VL  - 339
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2004.07.024
LA  - en
ID  - CRMATH_2004__339_7_499_0
ER  - 
%0 Journal Article
%A Benoîte de Saporta
%A Yves Guivarc'h
%A Emile Le Page
%T On the multidimensional stochastic equation $ {Y}_{n+1}={A}_{n}{Y}_{n}+{B}_{n}$
%J Comptes Rendus. Mathématique
%D 2004
%P 499-502
%V 339
%N 7
%I Elsevier
%R 10.1016/j.crma.2004.07.024
%G en
%F CRMATH_2004__339_7_499_0
Benoîte de Saporta; Yves Guivarc'h; Emile Le Page. On the multidimensional stochastic equation $ {Y}_{n+1}={A}_{n}{Y}_{n}+{B}_{n}$. Comptes Rendus. Mathématique, Volume 339 (2004) no. 7, pp. 499-502. doi : 10.1016/j.crma.2004.07.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.024/

[1] A. Brandt The stochastic equation Yn+1=AnYn+Bn with stationary coefficients, Adv. Appl. Probab., Volume 18 (1986), pp. 211-220

[2] H. Furstenberg Noncommuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428

[3] H. Furstenberg Boundary theory and stochastic processes on homogeneous spaces, Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., vol. XXVI, American Mathematical Society, 1973, pp. 193-229

[4] C.M. Goldie Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., Volume 1 (1991), pp. 26-166

[5] I.Ya. Goldsheid; Y. Guivarc'h Zariski closure and the dimension of the Gaussian law of the product of random matrices, Probab. Theory Related Fields, Volume 105 (1996), pp. 109-142

[6] Y. Guivarc'h; E. Le Page Simplicité de spectres de Lyapunov et propriété d'isolation spectrale pour une famille d'opérateurs de transfert sur l'espace projectif (V. Kaimanovitch, ed.), Random Walks and Geometry, Workshop Vienna 2001, De Gruyter, 2004, pp. 181-259

[7] Y. Guivarc'h; A. Raugi Products of random matrices: convergence theorems, Random matrices and their applications, Contemp. Math., Volume 50 (1986), pp. 31-54

[8] H. Kesten Random difference equations and renewal theory for products of random matrices, Acta Math., Volume 131 (1973), pp. 207-248

[9] H. Kesten Renewal theory for functionals of a Markov chain with general state space, Ann. Probab., Volume 2 (1974), pp. 355-386

[10] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983

  • Ionel Popescu; Tushar Vaidya Averaging plus learning models and their asymptotics, Proceedings of the Royal Society of London. A. Mathematical, Physical and Engineering Sciences, Volume 479 (2023) no. 2275, p. 20 (Id/No 20220681) | DOI:10.1098/rspa.2022.0681 | Zbl:8048262
  • Torkel Erhardsson Conditions for convergence of random coefficient AR(1) processes and perpetuities in higher dimensions, Bernoulli, Volume 20 (2014) no. 2, pp. 990-1005 | DOI:10.3150/13-bej513 | Zbl:1296.60073
  • A. Janssen; J. Segers Markov Tail Chains, Journal of Applied Probability, Volume 51 (2014) no. 04, p. 1133 | DOI:10.1017/s002190020001202x
  • A. Janssen; J. Segers Markov tail chains, Journal of Applied Probability, Volume 51 (2014) no. 4, pp. 1133-1153 | Zbl:1308.60067
  • A. Janssen; J. Segers Markov Tail Chains, Journal of Applied Probability, Volume 51 (2014) no. 4, p. 1133 | DOI:10.1239/jap/1421763332
  • Ewa Damek; Sebastian Mentemeier; Mariusz Mirek; Jacek Zienkiewicz Convergence to stable laws for multidimensional stochastic recursions: the case of regular matrices, Potential Analysis, Volume 38 (2013) no. 3, pp. 683-697 | DOI:10.1007/s11118-012-9292-y | Zbl:1266.60041
  • Gerold Alsmeyer; Sebastian Mentemeier Tail behaviour of stationary solutions of random difference equations: the case of regular matrices, Journal of Difference Equations and Applications, Volume 18 (2012) no. 8, pp. 1305-1332 | DOI:10.1080/10236198.2011.571383 | Zbl:1254.60071
  • Diana Hay; Reza Rastegar; Alexander Roitershtein Multivariate linear recursions with Markov-dependent coefficients, Journal of Multivariate Analysis, Volume 102 (2011) no. 3, pp. 521-527 | DOI:10.1016/j.jmva.2010.10.011 | Zbl:1208.60065
  • Laurent Bruneau; Alain Joye; Marco Merkli Infinite products of random matrices and repeated interaction dynamics, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 46 (2010) no. 2, pp. 442-464 | DOI:10.1214/09-aihp211 | Zbl:1208.60064
  • Changryong Baek; Vladas Pipiras; Herwig Wendt; Patrice Abry Second order properties of distribution tails and estimation of tail exponents in random difference equations, Extremes, Volume 12 (2009) no. 4, pp. 361-400 | DOI:10.1007/s10687-009-0082-x | Zbl:1224.60116
  • Nathanaël Enriquez; Christophe Sabot; Olivier Zindy A probabilistic representation of constants in Kesten's renewal theorem, Probability Theory and Related Fields, Volume 144 (2009) no. 3-4, pp. 581-613 | DOI:10.1007/s00440-008-0155-9 | Zbl:1168.60034
  • Jean Louis Pinault; Igor G. Dubus Stationary and non-stationary autoregressive processes with external inputs for predicting trends in water quality, Journal of Contaminant Hydrology, Volume 100 (2008) no. 1-2, p. 22 | DOI:10.1016/j.jconhyd.2008.05.001
  • Dariusz Buraczewski On tails of stationary measures on a class of solvable groups, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 43 (2007) no. 4, pp. 417-440 | DOI:10.1016/j.anihpb.2006.07.002 | Zbl:1118.60006
  • Claudia Klüppelberg; Serguei Pergamenchtchikov Extremal behaviour of models with multivariate random recurrence representation, Stochastic Processes and their Applications, Volume 117 (2007) no. 4, pp. 432-456 | DOI:10.1016/j.spa.2006.09.001 | Zbl:1118.60060
  • Dariusz Buraczewski On invariant measures of stochastic recursions in a critical case, The Annals of Applied Probability, Volume 17 (2007) no. 4, pp. 1245-1272 | DOI:10.1214/105051607000000140 | Zbl:1151.60034

Cité par 15 documents. Sources : Crossref, zbMATH

Commentaires - Politique