We study the asymptotic of the generalized Bergman kernels of the renormalized Bochner–Laplacian on high tensor powers of a positive line bundle on compact symplectic manifolds.
On étudie le développement asymptotique du noyau de Bergman généralisé du Laplacien de Bochner renormalisé associé à une puissance tendant vers l'infini d'un fibré en droites positif sur une variété symplectique compacte.
Published online:
Xiaonan Ma 1; George Marinescu 2
@article{CRMATH_2004__339_7_493_0, author = {Xiaonan Ma and George Marinescu}, title = {Generalized {Bergman} kernels on symplectic manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {493--498}, publisher = {Elsevier}, volume = {339}, number = {7}, year = {2004}, doi = {10.1016/j.crma.2004.07.016}, language = {en}, }
Xiaonan Ma; George Marinescu. Generalized Bergman kernels on symplectic manifolds. Comptes Rendus. Mathématique, Volume 339 (2004) no. 7, pp. 493-498. doi : 10.1016/j.crma.2004.07.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.016/
[1] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[2] The spectral density function for the Laplacian on high tensor powers of a line bundle, Ann. Global Anal. Geom., Volume 21 (2002), pp. 269-286
[3] The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1-23
[4] On the asymptotic expansion of Bergman kernel, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 193-198 (The full version:) | arXiv
[5] The Laplace operator on the nth tensor power of a line bundle: eigenvalues which are bounded uniformly in n, Asymptotic Anal., Volume 1 (1988), pp. 105-113
[6] On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Am. J. Math., Volume 122 (2000), pp. 235-273
[7] The Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002), pp. 651-664
[8] X. Ma, G. Marinescu, Generalized Bergman kernels on symplectic manifolds, Preprint
[9] X. Wang, Thesis, 2002
[10] Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, Volume 6 (1998), pp. 317-331
Cited by Sources:
Comments - Policy