Comptes Rendus
Mathematical Problems in Mechanics/Dynamical Systems
Periodic orbits of a one-dimensional inelastic particle system
Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 603-606.

The dynamical behavior of a one-dimensional inelastic particle system with two particles of different masses traveling between two walls is investigated. Energy is added at only one of the walls, which is oscillating, while the other wall is stationary. We show that if the particle nearer to the stationary wall is slightly lighter than the other particle and collisions between particles tend to the elastic limit, there are an infinite number of stable orbits. We also show that the widely studied situation of equal masses is an extremely special case, in which all the orbits are degenerate and collapse to a single trivial orbit in which one of the particles is trapped against the stationary wall.

On étudie le comportement dynamique d'un système inélastique uni-dimensionnel formé de deux particules de masses différentes se déplaçant entre deux murs. De l'énergie est ajoutée à l'un des murs, qui oscille, alors que l'autre est stationnaire. On montre que, si la particule proche du mur stationnaire est un peu plus légère que l'autre, et si les collisions entre les particules tendent vers la limite élastique, alors il y a un nombre infini d'orbites stables. On montre également que la situation couramment étudiée où les masses sont égales est un cas très particulier, dans lequel toutes les orbites sont dégénérées et tendent vers une orbit e triviale unique où l'une des particules est piégée par le mur stationnaire.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.07.026
Jonathan J. Wylie 1; Qiang Zhang 1

1 Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
@article{CRMATH_2004__339_8_603_0,
     author = {Jonathan J. Wylie and Qiang Zhang},
     title = {Periodic orbits of a one-dimensional inelastic particle system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--606},
     publisher = {Elsevier},
     volume = {339},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crma.2004.07.026},
     language = {en},
}
TY  - JOUR
AU  - Jonathan J. Wylie
AU  - Qiang Zhang
TI  - Periodic orbits of a one-dimensional inelastic particle system
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 603
EP  - 606
VL  - 339
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2004.07.026
LA  - en
ID  - CRMATH_2004__339_8_603_0
ER  - 
%0 Journal Article
%A Jonathan J. Wylie
%A Qiang Zhang
%T Periodic orbits of a one-dimensional inelastic particle system
%J Comptes Rendus. Mathématique
%D 2004
%P 603-606
%V 339
%N 8
%I Elsevier
%R 10.1016/j.crma.2004.07.026
%G en
%F CRMATH_2004__339_8_603_0
Jonathan J. Wylie; Qiang Zhang. Periodic orbits of a one-dimensional inelastic particle system. Comptes Rendus. Mathématique, Volume 339 (2004) no. 8, pp. 603-606. doi : 10.1016/j.crma.2004.07.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.026/

[1] L. Du; H. Li; L.P. Kadanoff Breakdown of hydrodynamics in a one-dimensional system of inelastic particles, Phys. Rev. Lett, Volume 74 (1995), pp. 1268-1271

[2] K. Geisshirt; P. Padilla; E. Praestgaard; S. Toxvaerd Controlling the temperature of one-dimensional systems composed of elastic and inelastic particles, Phys. Rev. E, Volume 57 (1998), pp. 1929-1938

[3] E.L. Grossman; B. Roman Density variations in a one-dimensional granular system, Phys. Fluids, Volume 8 (1996), pp. 3218-3228

[4] J.M. Luck; A. Mehta Bouncing ball with a finite restitution: chattering, locking and chaos, Phys. Rev. E, Volume 48 (1993), pp. 3988-3997

[5] S. McNamara; J. Barrat Energy flux into a fluidized granular medium at a vibrating wall, Phys. Rev. E, Volume 55 (1997), pp. 7767-7770

[6] S. McNamara; W.R. Young Inelastic collapse and clumping in a one-dimensional granular medium, Phys. Fluids A, Volume 4 (1992), pp. 496-504

[7] C. Vamos; N. Suciu; A. Georgescu Hydrodynamic equations for one-dimensional systems of inelastic particles, Phys. Rev. E, Volume 55 (1997), pp. 6277-6280

[8] J. Yang Dynamics of a one-dimensional inelastic particle system, Phys. Rev. E, Volume 61 (2000), pp. 2920-2923

[9] T. Zhou Effects of attractors on the dynamics of granular systems, Phys. Rev. Lett., Volume 80 (1998), pp. 3755-3758

[10] T. Zhou Velocity correlations in granular materials, Phys. Rev. E, Volume 58 (1998), pp. 7587-7597

Cited by Sources:

Comments - Policy


Articles of potential interest

Continuous orbit transitions in a one-dimensional inelastic particle system

Rong Yang; Jonathan J. Wylie

C. R. Math (2010)