We study a nonlinear equation arising from a semilinear perturbation of the Maxwell equations. The presence of the curl operator makes this equation strongly degenerate. A new variational approach, related to the Hodge decomposition of the vector potential A, is developed.
On étudie une équation nonlinéaire provenant d'une perturbation semilinéaire des équations de Maxwell. La présence du rotationnel rend l'équation fortement dégénérée. On propose une nouvelle approche liée à la décomposition de Hodge du potentiel vecteur A.
Published online:
Vieri Benci 1; Donato Fortunato 2
@article{CRMATH_2004__339_12_839_0, author = {Vieri Benci and Donato Fortunato}, title = {A strongly degenerate elliptic equation arising from the semilinear {Maxwell} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {839--842}, publisher = {Elsevier}, volume = {339}, number = {12}, year = {2004}, doi = {10.1016/j.crma.2004.07.029}, language = {en}, }
TY - JOUR AU - Vieri Benci AU - Donato Fortunato TI - A strongly degenerate elliptic equation arising from the semilinear Maxwell equations JO - Comptes Rendus. Mathématique PY - 2004 SP - 839 EP - 842 VL - 339 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2004.07.029 LA - en ID - CRMATH_2004__339_12_839_0 ER -
Vieri Benci; Donato Fortunato. A strongly degenerate elliptic equation arising from the semilinear Maxwell equations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 839-842. doi : 10.1016/j.crma.2004.07.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.029/
[1] Towards a unified field theory for classical electrodynamics, Arch. Rational Mech. Anal., Volume 173 (2004), pp. 379-414
[2] On the existence of infinitely many geodesics on space–time manifolds, Adv. Math., Volume 105 (1994), pp. 1-25
[3] Critical points theorems for indefinite functionals, Invent. Math., Volume 52 (1979), pp. 241-273
[4] Foundations of the new field theory, Proc. Roy. Soc. London A, Volume 144 (1934), pp. 425-451
[5] Applications of a min-max principle, Rev. Colombiana Mat., Volume 10 (1976), pp. 141-149
[6] Stationary states of the nonlinear Dirac equation: a variational approach, Commun. Math. Phys., Volume 171 (1995), pp. 323-350
Cited by Sources:
* Conference given by the first author during the meeting, Journées à la mémoire de Guido Stampacchia, Paris, 31 March and 1 April 2003.
Comments - Policy