Comptes Rendus
Partial Differential Equations
Strong solutions to a class of air quality models
Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 843-847.

We are concerned with strong L2 solutions to a class of degenerate elliptic reaction diffusion systems associated with air quality models.

On étudie l'existence de solutions fortes dans L2 pour une classe de systèmes de réaction diffusion elliptiques dégénérés associés à des modèles de qualité de l'air.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.10.012
William E. Fitzgibbon 1; Michel Langlais 2; Jeffrey J. Morgan 3

1 College of Technology, University of Houston, Houston, TX 77204-4021, USA
2 UMR CNRS 5466 mathématiques appliquées de Bordeaux, case 26, université Victor Segalen, Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
3 Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA
@article{CRMATH_2004__339_12_843_0,
     author = {William E. Fitzgibbon and Michel Langlais and Jeffrey J. Morgan},
     title = {Strong solutions to a class of air quality models},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {843--847},
     publisher = {Elsevier},
     volume = {339},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crma.2004.10.012},
     language = {en},
}
TY  - JOUR
AU  - William E. Fitzgibbon
AU  - Michel Langlais
AU  - Jeffrey J. Morgan
TI  - Strong solutions to a class of air quality models
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 843
EP  - 847
VL  - 339
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2004.10.012
LA  - en
ID  - CRMATH_2004__339_12_843_0
ER  - 
%0 Journal Article
%A William E. Fitzgibbon
%A Michel Langlais
%A Jeffrey J. Morgan
%T Strong solutions to a class of air quality models
%J Comptes Rendus. Mathématique
%D 2004
%P 843-847
%V 339
%N 12
%I Elsevier
%R 10.1016/j.crma.2004.10.012
%G en
%F CRMATH_2004__339_12_843_0
William E. Fitzgibbon; Michel Langlais; Jeffrey J. Morgan. Strong solutions to a class of air quality models. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 843-847. doi : 10.1016/j.crma.2004.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.012/

[1] C. Bardos Problèmes aux limites pour les équations aux dérivés partielles du premier ordre, Ann. Sci. École Norm. Sup. (3) (1970), pp. 185-233

[2] H. Brezis Opérateurs maximaux monotone et semigroupes de contraction dans les espaces de Hilbert, North-Holland, Amsterdam, 1972

[3] G. Fichera Sulle equazione differentiali lineari elliptico paraboliche de seconde ordine, Atti. Accad. Naz. Lincei (8) (1956), pp. 1-30

[4] W. Fitzgibbon, M. Langlais, J. Morgan, A degenerate reaction system modeling the atmospheric dispersion of pollutants, in preparation

[5] R. Harley; A. Russel; G. McRae; G. Cass; J. Seinfield Photochemcial modeling of the Southern California air quality study, J. Environ. Sci. Tech., Volume 27 (1993), pp. 387-388

[6] M. Langlais Solutions fortes pour une classe de problèmes aux limites du ordre degenerées, Commun. Partial Differential Equations, Volume 4 (1979), pp. 869-897

[7] M. Langlais A degenerating elliptic problem with unilateral constraints, Nonlinear Anal., Volume 4 (1980), pp. 329-342

[8] O.A. Oleinik; E.V. Radkevic Second Order Equations with Nonnegative Characteristic Form, Plenum Press, 1973

[9] J. Seinfield; S. Pandis Atmospheric Chemistry and Physics, Wiley, New York, 1995

Cited by Sources:

Comments - Policy