We are concerned with strong solutions to a class of degenerate elliptic reaction diffusion systems associated with air quality models.
On étudie l'existence de solutions fortes dans pour une classe de systèmes de réaction diffusion elliptiques dégénérés associés à des modèles de qualité de l'air.
Accepted:
Published online:
William E. Fitzgibbon 1; Michel Langlais 2; Jeffrey J. Morgan 3
@article{CRMATH_2004__339_12_843_0, author = {William E. Fitzgibbon and Michel Langlais and Jeffrey J. Morgan}, title = {Strong solutions to a class of air quality models}, journal = {Comptes Rendus. Math\'ematique}, pages = {843--847}, publisher = {Elsevier}, volume = {339}, number = {12}, year = {2004}, doi = {10.1016/j.crma.2004.10.012}, language = {en}, }
TY - JOUR AU - William E. Fitzgibbon AU - Michel Langlais AU - Jeffrey J. Morgan TI - Strong solutions to a class of air quality models JO - Comptes Rendus. Mathématique PY - 2004 SP - 843 EP - 847 VL - 339 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2004.10.012 LA - en ID - CRMATH_2004__339_12_843_0 ER -
William E. Fitzgibbon; Michel Langlais; Jeffrey J. Morgan. Strong solutions to a class of air quality models. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 843-847. doi : 10.1016/j.crma.2004.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.012/
[1] Problèmes aux limites pour les équations aux dérivés partielles du premier ordre, Ann. Sci. École Norm. Sup. (3) (1970), pp. 185-233
[2] Opérateurs maximaux monotone et semigroupes de contraction dans les espaces de Hilbert, North-Holland, Amsterdam, 1972
[3] Sulle equazione differentiali lineari elliptico paraboliche de seconde ordine, Atti. Accad. Naz. Lincei (8) (1956), pp. 1-30
[4] W. Fitzgibbon, M. Langlais, J. Morgan, A degenerate reaction system modeling the atmospheric dispersion of pollutants, in preparation
[5] Photochemcial modeling of the Southern California air quality study, J. Environ. Sci. Tech., Volume 27 (1993), pp. 387-388
[6] Solutions fortes pour une classe de problèmes aux limites du ordre degenerées, Commun. Partial Differential Equations, Volume 4 (1979), pp. 869-897
[7] A degenerating elliptic problem with unilateral constraints, Nonlinear Anal., Volume 4 (1980), pp. 329-342
[8] Second Order Equations with Nonnegative Characteristic Form, Plenum Press, 1973
[9] Atmospheric Chemistry and Physics, Wiley, New York, 1995
Cited by Sources:
Comments - Politique