Comptes Rendus
Probability Theory/Partial Differential Equations
Malliavin calculus for highly degenerate 2D stochastic Navier–Stokes equations
Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 793-796.

This Note mainly presents the results from “Malliavin calculus and the randomly forced Navier–Stokes equation” by J.C. Mattingly and E. Pardoux. It also contains a result from “Ergodicity of the degenerate stochastic 2D Navier–Stokes equation” by M. Hairer and J.C. Mattingly. We study the Navier–Stokes equation on the two-dimensional torus when forced by a finite dimensional Gaussian white noise. We give conditions under which the law of the solution at any time t>0, projected on a finite dimensional subspace, has a smooth density with respect to Lebesgue measure. In particular, our results hold for specific choices of four dimensional Gaussian white noise. Under additional assumptions, we show that the preceding density is everywhere strictly positive. This Note's results are a critical component in the ergodic results discussed in a future article.

Cette Note présente essentiellement les résultats de l'article “Malliavin calculus and the randomly forced Navier–Stokes equation”, de J.C. Mattingly et E. Pardoux. Elle contient aussi un résultat de l'article “Ergodicity of the degenerate stochastic 2D Navier–Stokes equation”, de M. Hairer et J.C. Mattingly. Nous étudions l'équation de Navier–Stokes sur le tore bidimensionel, excitée par un bruit blanc gaussien de dimension finie. Nous donnons des conditions sous lesquelles la loi de la projection sur tout sous-espace de dimension finie de la solution à un instant t>0 arbitraire a une densité régulière par rapport à la mesure de Lebesgue. Nos résultats sont en particulier vrais dans certains cas de bruit blanc gaussien de dimension quatre. Sous des hypothèses supplémentaires, nous montrons que la densité dont il est question ci-dessus est strictement positive partout. Les résultats de cette Note fournissent une part cruciale des arguments utilisés dans le second article cité ci-dessus, pour démontrer l'ergodicité de la solution.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.09.002
Martin Hairer 1; Jonathan C. Mattingly 2; Étienne Pardoux 3

1 Math Department, The University of Warwick, Coventry CV4 7AL, UK
2 Math Department, Duke University, Box 90320, Durham, NC 27708 USA
3 LATP/CMI, université de Provence, 39, rue F. Joliot Curie, 13453 Marseille cedex 13, France
@article{CRMATH_2004__339_11_793_0,
     author = {Martin Hairer and Jonathan C. Mattingly and \'Etienne Pardoux},
     title = {Malliavin calculus for highly degenerate {2D} stochastic {Navier{\textendash}Stokes} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {793--796},
     publisher = {Elsevier},
     volume = {339},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.002},
     language = {en},
}
TY  - JOUR
AU  - Martin Hairer
AU  - Jonathan C. Mattingly
AU  - Étienne Pardoux
TI  - Malliavin calculus for highly degenerate 2D stochastic Navier–Stokes equations
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 793
EP  - 796
VL  - 339
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2004.09.002
LA  - en
ID  - CRMATH_2004__339_11_793_0
ER  - 
%0 Journal Article
%A Martin Hairer
%A Jonathan C. Mattingly
%A Étienne Pardoux
%T Malliavin calculus for highly degenerate 2D stochastic Navier–Stokes equations
%J Comptes Rendus. Mathématique
%D 2004
%P 793-796
%V 339
%N 11
%I Elsevier
%R 10.1016/j.crma.2004.09.002
%G en
%F CRMATH_2004__339_11_793_0
Martin Hairer; Jonathan C. Mattingly; Étienne Pardoux. Malliavin calculus for highly degenerate 2D stochastic Navier–Stokes equations. Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 793-796. doi : 10.1016/j.crma.2004.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.002/

[1] S. Aida; S. Kusuoka; D. Stroock On the support of Wiener functionals, Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser., vol. 284, Longman Sci. Tech., Harlow, 1993, pp. 3-34

[2] G. Ben Arous; R. Léandre Décroissance exponentielle du noyau de la chaleur sur la diagonale. II, Probab. Theory Related Fields, Volume 90 (1991) no. 3, pp. 377-402

[3] G. Da Prato; J. Zabczyk Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996

[4] E. Weinan; J.C. Mattingly Ergodicity for the Navier–Stokes equation with degenerate random forcing: finite-dimensional approximation, Commun. Pure Appl. Math., Volume 54 (2001) no. 11, pp. 1386-1402

[5] J.-P. Eckmann; M. Hairer Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Commun. Math. Phys., Volume 219 (2001) no. 3, pp. 523-565

[6] F. Flandoli; B. Maslowski Ergodicity of the 2-D Navier–Stokes equation under random perturbations, Commun. Math. Phys., Volume 171 (1995), pp. 119-141

[7] M. Hairer, J.C. Mattingly, Ergodicity of the degenerate stochastic 2D Navier–Stokes equation, June 2004, submitted for publication

[8] M. Hairer, J.C. Mattingly, Ergodic properties of highly degenerate 2D Navier–Stokes equation, C. R. Acad. Sci. Paris, Ser. I, in press

[9] L. Hörmander The Analysis of Linear Partial Differential Operators I–IV, Springer, New York, 1985

[10] A.J. Majda; A.L. Bertozzi Vorticity and Incompressible Flow, Cambridge Texts in Appl. Math., vol. 27, Cambridge University Press, Cambridge, 2002

[11] J.C. Mattingly, É. Pardoux, Malliavin calculus and the randomly forced Navier Stokes equation, June, 2004, submitted for publication

[12] D. Ocone Stochastic calculus of variations for stochastic partial differential equations, J. Funct. Anal., Volume 79 (1988) no. 2, pp. 288-331

Cited by Sources:

Comments - Policy


Articles of potential interest

Ergodic properties of highly degenerate 2D stochastic Navier–Stokes equations

Martin Hairer; Jonathan C. Mattingly

C. R. Math (2004)