Comptes Rendus
Probability Theory/Partial Differential Equations
SPDEs in infinite dimension with Poisson noise
[ESDP en dimension infinie avec un bruit de Poisson.]
Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 647-652.

In this Note we investigate stochastic partial differential equations in infinite dimension driven by a compensated Poisson random measure. Apart from the existence and uniqueness of mild solutions our main interest is directed towards their regularity w.r.t. the initial datum. Our main result is the first order Fréchet differentiability of the mild solution as a mapping from Lq to Hp, the space of predictable p-integrable processes, where q>p2. Higher order Fréchet differentiability can be proved similarly. As a consequence we obtain gradient estimates in infinite dimensions for the corresponding resolvents.

Dans cette Note nous analysons des équations stochastiques aux dérivées partielles en dimension infinie avec une diffusion décrite par une intégrale stochastique par rapport à une mesure aléatoire de Poisson compensée par la mesure d'intensité. Outre l'existence et l'unicité de la solution ‘mild’, notre principal intérêt concerne la régularité par rapport à la condition initiale. Le résultat principal est la différentiabilité au sens de Fréchet de la solution comme application de Lq vers l'espace des processus prévisibles X(t), t[0,T], tels que E[X(t)p]<q>p2. La différentiabilité d'ordre deux au sens de Fréchet peut être obtenue de la même façon.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2004.09.004

Claudia Knoche 1

1 Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany
@article{CRMATH_2004__339_9_647_0,
     author = {Claudia Knoche},
     title = {SPDEs in infinite dimension with {Poisson} noise},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {647--652},
     publisher = {Elsevier},
     volume = {339},
     number = {9},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.004},
     language = {en},
}
TY  - JOUR
AU  - Claudia Knoche
TI  - SPDEs in infinite dimension with Poisson noise
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 647
EP  - 652
VL  - 339
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2004.09.004
LA  - en
ID  - CRMATH_2004__339_9_647_0
ER  - 
%0 Journal Article
%A Claudia Knoche
%T SPDEs in infinite dimension with Poisson noise
%J Comptes Rendus. Mathématique
%D 2004
%P 647-652
%V 339
%N 9
%I Elsevier
%R 10.1016/j.crma.2004.09.004
%G en
%F CRMATH_2004__339_9_647_0
Claudia Knoche. SPDEs in infinite dimension with Poisson noise. Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 647-652. doi : 10.1016/j.crma.2004.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.004/

[1] S. Albeverio; J.-L. Wu; T.-S. Zhang Parabolic SPDEs driven by Poisson white noise, Stochastic Process. Appl., Volume 74 (1998), pp. 21-36

[2] D. Applebaum; J.-L. Wu Stochastic partial differential equations driven by Lévy space–time white noise, Random Operators Stochastic Equations, Volume 8 (2000), pp. 245-261

[3] G. Da Prato; J. Zabczyk Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996

[4] N. Ikeda; S. Watanabe Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981

[5] C. Knoche, Stochastic integrals and stochastic differential equations with respect to compensated Poisson random measures in infinite dimensional Hilbert spaces, Preprint No. 03-06-119 des Forschungszentrums BiBoS (Bielefeld-Bonn-Stochastics), Universität Bielefeld, 2003

[6] C. Knoche, Mild solutions of SPDE's driven by Poisson noise in infinite dimensions and their dependence on initial datum, Doctor-degree thesis, Fakultät für Mathematik, Universität Bielefeld, 2004, in preparation

[7] V. Mandrekar, B. Rüdiger, Existence and uniqueness of path wise solutions for stochastic integral equations driven by non Gaussian noise on separable Banach spaces, Preprint No. 61 des SFB 611, Fakultät für Mathematik, Universität Bonn, 2003

[8] C. Müller The heat equation with Lévy noise, Stochastic Process. Appl., Volume 74 (1998), pp. 67-82

[9] S. Peszat Existence and uniqueness of the solution for stochastic equations on Banach spaces, Stochastic Stochastics Reports, Volume 55 (1995), pp. 167-193

[10] J.B. Walsh An introduction to stochastic partial differential equations, École d'Été de Probabilité de St. Flour XIV, Lecture Notes in Math., vol. 1180, Springer-Verlag, Berlin, 1986, pp. 266-439

  • 本萱 苗 One-Dimensional Stochastic Wave Equations Driven by Poisson White Noise, Pure Mathematics, Volume 11 (2021) no. 04, p. 552 | DOI:10.12677/pm.2021.114068
  • Dengfeng Xia; Litan Yan; Weiyin Fei Mixed fractional heat equation driven by fractional Brownian sheet and Lévy process, Mathematical Problems in Engineering, Volume 2017 (2017), p. 9 (Id/No 8059796) | DOI:10.1155/2017/8059796 | Zbl:1426.35233
  • Gabriel Deugoué; Mamadou Sango Strong solutions for the stochastic 3D LANS-α model driven by non-Gaussian Lévy noise, Stochastics and Dynamics, Volume 15 (2015) no. 2, p. 38 (Id/No 1550011) | DOI:10.1142/s0219493715500112 | Zbl:1315.60074
  • Felix Lindner; René L. Schilling Weak order for the discretization of the stochastic heat equation driven by impulsive noise, Potential Analysis, Volume 38 (2013) no. 2, pp. 345-379 | DOI:10.1007/s11118-012-9276-y | Zbl:1263.60058
  • Vidyadhar Mandrekar; Barbara Rüdiger; Stefan Tappe Itô’s Formula for Banach-space-valued Jump Processes Driven by Poisson Random Measures, Seminar on Stochastic Analysis, Random Fields and Applications VII, Volume 67 (2013), p. 171 | DOI:10.1007/978-3-0348-0545-2_7
  • Arnaud Debussche; Michael Högele; Peter Imkeller Introduction, The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise, Volume 2085 (2013), p. 1 | DOI:10.1007/978-3-319-00828-8_1
  • Arnaud Debussche; Michael Högele; Peter Imkeller Localization and Metastability, The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise, Volume 2085 (2013), p. 131 | DOI:10.1007/978-3-319-00828-8_7
  • Stefan Tappe Some refinements of existence results for SPDEs driven by Wiener processes and Poisson random measures, International Journal of Stochastic Analysis, Volume 2012 (2012), p. 24 (Id/No 236327) | DOI:10.1155/2012/236327 | Zbl:1263.60060
  • Thomas Dunst; Erika Hausenblas; Andreas Prohl Approximate Euler Method for Parabolic Stochastic Partial Differential Equations Driven by Space-Time Lévy Noise, SIAM Journal on Numerical Analysis, Volume 50 (2012) no. 6, p. 2873 | DOI:10.1137/100818297
  • Carlo Marinelli; Claudia Prévôt; Michael Röckner Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise, Journal of Functional Analysis, Volume 258 (2010) no. 2, pp. 616-649 | DOI:10.1016/j.jfa.2009.04.015 | Zbl:1186.60060
  • Kehua Shi; Yongjin Wang On a stochastic fractional partial differential equation driven by a Lévy space-time white noise, Journal of Mathematical Analysis and Applications, Volume 364 (2010) no. 1, pp. 119-129 | DOI:10.1016/j.jmaa.2009.11.010 | Zbl:1185.60071
  • Carlo Marinelli Local well-posedness of Musiela's SPDE with Lévy noise, Mathematical Finance, Volume 20 (2010) no. 3, pp. 341-363 | DOI:10.1111/j.1467-9965.2010.00403.x | Zbl:1193.91188
  • LiJun Bo; KeHua Shi; YongJin Wang Approximating solutions of neutral stochastic evolution equations with jumps, Science in China. Series A, Volume 52 (2009) no. 5, pp. 895-907 | DOI:10.1007/s11425-008-0165-1 | Zbl:1183.34081
  • S. Albeverio; V. Mandrekar; B. Rüdiger Existence of mild solutions for stochastic differential equations and semilinear equations with non-Gaussian Lévy noise, Stochastic Processes and their Applications, Volume 119 (2009) no. 3, pp. 835-863 | DOI:10.1016/j.spa.2008.03.006 | Zbl:1168.60014
  • Jiaowan Luo; Takeshi Taniguchi The existence and uniqueness for non-Lipschitz stochastic neutral delay evolution equations driven by Poisson jumps, Stochastics and Dynamics, Volume 9 (2009) no. 1, pp. 135-152 | DOI:10.1142/s0219493709002592 | Zbl:1167.60336
  • Lijun Bo; Kehua Shi; Yongjin Wang Jump type Cahn-Hilliard equations with fractional noises, Chinese Annals of Mathematics. Series B, Volume 29 (2008) no. 6, pp. 663-678 | DOI:10.1007/s11401-007-0293-x | Zbl:1195.60088
  • Damir Filipović; Stefan Tappe Existence of Lévy term structure models, Finance and Stochastics, Volume 12 (2008) no. 1, pp. 83-115 | DOI:10.1007/s00780-007-0054-4 | Zbl:1150.91017
  • Erika Hausenblas SPDEs driven by Poisson random measure with non Lipschitz coefficients: existence results, Probability Theory and Related Fields, Volume 137 (2007) no. 1-2, pp. 161-200 | DOI:10.1007/s00440-006-0501-8 | Zbl:1119.60054
  • Carlo Marinelli Local Well-Posedness of Musiela's SPDE with Lévy Noise, SSRN Electronic Journal (2007) | DOI:10.2139/ssrn.979064
  • B. Rüdiger; G. Ziglio Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces, Stochastics, Volume 78 (2006) no. 6, pp. 377-410 | DOI:10.1080/17442500600976137 | Zbl:1117.60056
  • Erika Hausenblas Existence, Uniqueness and Regularity of Parabolic SPDEs Driven by Poisson Random Measure, Electronic Journal of Probability, Volume 10 (2005) no. none | DOI:10.1214/ejp.v10-297

Cité par 21 documents. Sources : Crossref, zbMATH

Commentaires - Politique