[Naissance de produits de sphères invariants lors du couplage non linéaire d'oscillateurs ou de mouvements quasi-périodiques.]
Pour les familles génériques de champs de vecteurs ou de transformations, toutes sortes de produits de sphères normalement hyperboliques peuvent apparaître près des points stationnaires partiellement elliptiques.
For generic families of vector fields or transformations, normally hyperbolic invariant products of spheres appear near partially elliptic rest points.
Accepté le :
Publié le :
Mathilde Kammerer-Colin de Verdière 1
@article{CRMATH_2004__339_9_625_0, author = {Mathilde Kammerer-Colin de Verdi\`ere}, title = {Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions}, journal = {Comptes Rendus. Math\'ematique}, pages = {625--629}, publisher = {Elsevier}, volume = {339}, number = {9}, year = {2004}, doi = {10.1016/j.crma.2004.09.017}, language = {en}, }
TY - JOUR AU - Mathilde Kammerer-Colin de Verdière TI - Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions JO - Comptes Rendus. Mathématique PY - 2004 SP - 625 EP - 629 VL - 339 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2004.09.017 LA - en ID - CRMATH_2004__339_9_625_0 ER -
Mathilde Kammerer-Colin de Verdière. Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions. Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 625-629. doi : 10.1016/j.crma.2004.09.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.017/
[1] Quasi-Periodic Motions in Families of Dynamical Systems. Order Amidst Chaos, Lecture Notes in Math., vol. 1645, Springer-Verlag, 1997
[2] Some results on stable manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 119-124
[3] M. Chaperon, Stable manifolds and the Perron–Irwin method, Ergodic Theory Dyn. Systems, volume in memory of M.R. Herman, in press
[4] Bifurcations de points fixes elliptiques I. Courbes invariantes, Inst. Hautes Études Sci. Publ. Math., Volume 61 (1985), pp. 67-127
[5] Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-225
[6] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42, Springer-Verlag, 1983
[7] Invariant Manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977
[8] M. Kammerer-Colin de Verdière, Generalized Hopf bifurcations, in preparation
Cité par Sources :
Commentaires - Politique