Comptes Rendus
Dynamical Systems
Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions
Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 625-629.

For generic families of vector fields or transformations, normally hyperbolic invariant products of spheres appear near partially elliptic rest points.

Pour les familles génériques de champs de vecteurs ou de transformations, toutes sortes de produits de sphères normalement hyperboliques peuvent apparaître près des points stationnaires partiellement elliptiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.09.017

Mathilde Kammerer-Colin de Verdière 1

1 Université de Bourgogne, laboratoire de topologie, UMR 5584 du CNRS, B.P. 47870, 21078 Dijon cedex, France
@article{CRMATH_2004__339_9_625_0,
     author = {Mathilde Kammerer-Colin de Verdi\`ere},
     title = {Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {625--629},
     publisher = {Elsevier},
     volume = {339},
     number = {9},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.017},
     language = {en},
}
TY  - JOUR
AU  - Mathilde Kammerer-Colin de Verdière
TI  - Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 625
EP  - 629
VL  - 339
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2004.09.017
LA  - en
ID  - CRMATH_2004__339_9_625_0
ER  - 
%0 Journal Article
%A Mathilde Kammerer-Colin de Verdière
%T Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions
%J Comptes Rendus. Mathématique
%D 2004
%P 625-629
%V 339
%N 9
%I Elsevier
%R 10.1016/j.crma.2004.09.017
%G en
%F CRMATH_2004__339_9_625_0
Mathilde Kammerer-Colin de Verdière. Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions. Comptes Rendus. Mathématique, Volume 339 (2004) no. 9, pp. 625-629. doi : 10.1016/j.crma.2004.09.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.017/

[1] H. Broer; G.B. Huitema; M.B. Sevryuk Quasi-Periodic Motions in Families of Dynamical Systems. Order Amidst Chaos, Lecture Notes in Math., vol. 1645, Springer-Verlag, 1997

[2] M. Chaperon Some results on stable manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 119-124

[3] M. Chaperon, Stable manifolds and the Perron–Irwin method, Ergodic Theory Dyn. Systems, volume in memory of M.R. Herman, in press

[4] A. Chenciner Bifurcations de points fixes elliptiques I. Courbes invariantes, Inst. Hautes Études Sci. Publ. Math., Volume 61 (1985), pp. 67-127

[5] N. Fenichel Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-225

[6] J. Guckenheimer; P. Holmes Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42, Springer-Verlag, 1983

[7] M.W. Hirsch; C.C. Pugh; M. Shub Invariant Manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, 1977

[8] M. Kammerer-Colin de Verdière, Generalized Hopf bifurcations, in preparation

Cited by Sources:

Comments - Politique